
Chapter 4

Pattern Recognition Concepts

This chapter gives a brief survey of methods used to recognize objects. These methods

apply to the recognition of objects in images, but are applicable to any other kind of data as

well. The basic approach views an instance to be recognized as a vector of measurements.

Several examples are discussed, the central one being the recognition of characters. The

reader is also introduced to some simple methods whereby a machine can learn to recognize

objects by being taught from samples. After studying these �rst four chapters, the reader

should understand the design of some complete machine vision systems and should be able

to experiment with building a complete set of algorithms for some simple yet real problem.

4.1 Pattern Recognition Problems

In many practical problems, there is a need to make some decision about the content of an

image or about the classi�cation of an object that it contains. For example, the user of a

notebook computer may be able to give input using handprinted characters. In this case,

there would be m = 128 ASCII characters and each handprinted object would be classi�ed

into one of the m classes. See Figure 4.1. The classi�cation of an object { whether it is an

'A' or an '8', etc { would be based on the features of its optical image or perhaps of a pres-

sure footprint, which is also an image-like representation. The classi�cation process might

actually fail, either because the character is badly made, or because the person invented a

new character. Usually, a reject class is included in a system design in order to cover such

cases. Image data put into the reject class might be examined again later at some higher

level, might result in the formation of a new class, or might just be saved in raw form for

viewing.

Imagine an automatic bank teller machine (ATM) using a camera to verify that a current

user is indeed authentic. Here, the image of the current person's face is to be matched to a

stored image, or images, attached to the current account and stored either on a computer

network or in the bank card itself.

1 Definition The process of matching an object instance to a single object prototype or

class de�nition is called veri�cation.

1
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Figure 4.1: Binary images of 'A' and '8'.

In another application, introduced in the exercises of Chapter 1, a food market recogni-

tion system would classify fruits and vegetables placed on the checker's scale. The classes

would be the set of all identi�able produce items, such as Ida apples, Fuji apples, collard

greens, spinach greens, mushrooms, etc., each with a separate name and per pound charge

1

.

One de�nition for recognition is to know again. A recognition system must contain some

memory of the objects that it is to recognize. This memory representation might be built

in, perhaps as is the frog's model of a y; or might be taught by provision of a large number

of samples, as a schoolteacher teaches the alphabet; or it might be programmed in terms

of speci�c image features, perhaps as a mother would teach a child to recognize �re trucks

versus buses. Recognition and learning of patterns are subjects of considerable depth and

interest to cognitive pyschology, pattern recognition, and computer vision. This chapter

takes a practical approach and describes methods that have had success in applications,

leaving some pointers to the large theoretical literature in the references at the end of the

chapter.

1

Such a system, called Veggie Vision, has already been developed by IBM.



Shapiro and Stockman 3

4.2 Common model for classi�cation

We summarize the elements of the common model of classi�cation: this breakdown is prac-

tical rather than theoretical and done so that pattern recognition systems can be designed

and built using separately developed hardware and software modules.

Classes

There is a set of m known classes of objects. These are known either by some description

or by having a set of examples for each of the classes. For example, for character classi�-

cation, we have either a description of the appearance of each character or we have a set

of samples of each. In the general case, there will be a special reject class for objects that

cannot be placed in one of the known classes.

2 Definition An ideal class is a set of objects having some important common properties:

in practice, a class to which an object belongs is denoted by some class label. Classi�ca-

tion is a process that assigns a label to an object according to some representation of the

object's properties. A classi�er is a device or algorithm which inputs an object representa-

tion and outputs a class label.

3 Definition A reject class is a generic class for objects that cannot be placed in any of

the designated known classes.

Sensor/transducer

There must be some device to sense the actual physical object and output a (usually

digital) representation of it for processing by machine. Most often, the sensor is selected

from existing sensors (o�-the-shelf) built for a larger class of problems. For example, to

classify vegetables in the supermarket, we could �rst try using a general color camera that

would provide an image representation from which color, shape, and texture features could

be obtained. To recognize characters made by an impression using a stylus, we would use a

pressure sensitive array.

Since this is a book about machine vision, sensors that produce 2D arrays of sensed

data are of most interest. However, pattern recognition itself is more general and just as

applicable to recognizing spoken phone numbers, for example, as phone numbers written on

paper.

Feature extractor

The feature extractor extracts information relevant to classi�cation from the data input

by the sensor. Usually, feature extraction is done in software. Software can be adapted to

the sensor hardware on the input side and can evolve through research and development

to output results highly relevant to classi�cation. Many image features were de�ned in the

previous chapter.

Classi�er
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Figure 4.2: Classi�cation system diagram: discriminant functions f(x;K) perform some

computation on input feature vector x using some knowledge K from training and pass

results to a �nal stage that determines the class.

The classi�er uses the features extracted from the sensed object data to assign the object

to one of the m designated classes C
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A block diagram of a classi�cation system is given in Figure 4.2. A d�dimensional

feature vector x is the input representing the object to be classi�ed. The system has one

block for each possible class, which contains some knowledge K about the class and some

processing capability. Results from the m computations are passed to the �nal classi�cation

stage, which decides the class of the object. The diagram is general enough to model the

three di�erent types of classi�cation discussed below: (a) classi�cation using the nearest

mean, (b) classi�cation by maximum a posteriori probability, and (c) classi�cation using a

feed-forward arti�cial neural network.

Building the classi�cation system

Each of the system parts has many alternative implementations. Image sensors were

treated in Chapter 2. Chapter 3 discussed how to compute a number of di�erent features

from binary images of objects. Computing color and texture features is treated in Chapters

6 and 7. The character recognition example is again instructive. Characters written in a 30

x 20 window would result in 600 pixels. Feature extraction might process these 600 pixels

and output 10 to 30 features on which to base the classi�cation decisions. This example is

developed below.

Another common name for the feature extractor is the preprocessor. Between the sensor

and the classi�er, some �ltering or noise cleaning must also be performed that should be

part of the preprocessing. Some noise cleaning operations were seen in Chapter 3 and more

will be studied in Chapter 5. The division of processing between feature extraction and
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Figure 4.3: The receiver operating curve or \ROC" plots correct detection rate versus false

alarm rate. Generally, the number of false alarms will go up as the system attempts to

detect higher percentages of known objects. Modest detection performance can often be

achieved at a low cost in false alarms, but correct detection of nearly all objects will cause

a large percentage of unknown objects to be incorrectly classi�ed into some known class.

classi�cation is usually somewhat arbitrary and more due to engineering concerns than to

some inherent properties of an application. Indeed, we will look at neural nets, which can

do one step classi�cation directly from the input image.

Evaluation of system error

The error rate of a classi�cation system is one measure of how well the system solves

the problem for which it was designed. Other measures are speed, in terms of how many

objects can be processed per unit time, and expense, in terms of hardware, software, and

development cost. Performance is determined by both the errors and rejections made; clas-

sifying all inputs into the reject class means that the system makes no errors but is useless.

4 Definition (classification error) The classi�er makes a classi�cation error when-

ever it classifes the input object as class C

i

when the true class is class C

j

; i 6= j and

C

i

6= C

r

, the reject class.

5 Definition (empirical error rate) The empirical error rate of a classi�cation sys-

tem is the number of errors made on independent test data divided by the number of classi-

�cations attempted.

6 Definition (empirical reject rate) The empirical reject rate of a classi�cation sys-

tem is the number of rejects made on independent test data divided by the number of clas-

si�cations attempted.

7 Definition (Independent Test Data) Independent test data are sample objects with

true class known, including objects from the \reject class", that were not used in designing
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the feature extraction and classi�cation algorithms.

The above de�nitions can be used in practice to test the performance of a classi�cation

system. We must be very careful to insure that the samples used to design and those used

to test the system are representative of the samples that the system will have to process

in the future; and, samples used to test the system must be independent of those used to

design it. Sometimes, we assume that our data follows some theoretical distribution. With

this assumption, we are able to compute a theoretical probability of error for future perfor-

mance, rather than just an empirical error rate from testing. This concept will be discussed

below.

Suppose a handprinted character recognition module for a hand-held computer correctly

recognizes 95% of a user's input characters. Given that the user may have to edit an input

document anyway, a 5% error rate may be acceptable. Interestingly, such a system might

actually train the user, as well as the user training the system, so that performance gradu-

ally improves. For example, perhaps the user learns to more carefully close up 8's so that

they are not confused with 6's. For a banking system that must read hand-printed digits

on deposit slips, a 5% error rate might be intolerable.

False alarms and false dismissals

Some problems are special two-class problems where the meaning of the classes might

be (a) good object versus bad object, (b) object present in the image versus object absent,

or (c) person has disease D versus person does not have disease D. Here, the errors take on

special meaning and are not symmetric. Case (c) is most instructive: if the system incor-

rectly says that the person does have disease D then the error is called a false alarm or false

positive; whereas, if the system incorrectly says that the person does not have disease D,

then the error is called a false dismissal or false negative. In the case of the false alarm, it

probably means that the person will undergo the cost of more tests, or of taking medicine

that is not needed. In the case of false dismissal, the diagnosis is missed and the person will

not be treated, possibly leading to grave circumstances. Because the cost of the errors di�er

greatly, it may make sense to bias the decision in order to minimize false dismissals at the

cost of increasing the number of false alarms. Case (a) is less dramatic when the problem is

to cull out bruised cherries; a false alarm may mean that the cherry goes into a pie rather

than in the produce bin where it would have had more value. False alarms in case (b) may

mean we waste energy by turning on a light when there really was no motion in the scene

or that we counted an auto on the highway when one really did not pass by: false dismissals

in case (b) also have interesting consequences. Figure 4.3 shows a typical receiver operating

curve, which relates false alarm rate to detection rate. In order to increase the percentage

of objects correctly recognized, one usually has to pay a cost of incorrectly passing along

objects that should be rejected.

4.3 Precision versus recall

In the application of document retrieval (DR) or image retrieval, the objective is to retrieve

interesting objects of class C

1

and not too many uninteresting objects of class C

2

according

to features supplied in a user's query. For example, the user might be interested in retrieving
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images of sunsets, or perhaps horses. The performance of such a system is characterized by

its precision and recall.

8 Definition (precision) The precision of a DR system is the number of relevant docu-

ments (true C

1

) retrieved divided by the total number of documents retrieved (true C

1

plus

false alarms actually from C

2

).

9 Definition (recall) The recall of a DR system is the number of relevant documents

retrieved by the system divided by the total number of relevant documents in the database.

Equivalently, this is the number of true C

1

documents retrieved divided by the total of the

true C

1

documents retrieved and the false dismisals.

For example, suppose an image database contains 200 sunset images that would be of

interest to the user and that the user hopes will match the query. Suppose the system

retrieves 150 of those 200 relevant images and 100 other images of no interest to the user.

The precision of this retrieval (classi�cation) operation is 150=250 = 60% while the recall

is 150=200 = 75%. The system could obtain 100% recall if it returned all images in the

database, but then its precision would be terrible. Alternatively, if the classi�cation is

tightly set for a low false alarm rate, then the precision would be high, but the recall would

be low. Image database retrieval will be examined in some detail in Chapter 8.

4.4 Features used for representation

A crucial issue for both theory and practice is what representation or encoding of the object is

used in the recognition process? Alternatively, what features are important for recognition?

Let's return to the handprinted character recognition application. Suppose that individual

characters can be isolated by a connected components algorithm or by requiring the writer

to write them in designated boxes and that we have the following features of each computed

by the methods of Chapter 3.

� the area of the character in units of black pixels.

� the height and width of the bounding box of its pixels.

� the number of holes inside the character.

� the number of strokes forming the character.

� the center (centroid) of the set of pixels.

� the best axis direction through the pixels as the axis of least inertia.

� the second moments of the pixels about the axis of least inertia and most inertia.

Using common-sense reasoning, we can make a table of the properties of characters in

terms of these features. The table can be re�ned by studying the properties of many samples

of each character. After doing this, we might have a short decision procedure to classify

characters, or at least a set of prototypes to be used for comparison.

Table 4.1 shows 8 features for 10 di�erent characters. For now, assume that there is no

error in computing the features. A sequential decision procedure can be used to classify
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(class) number number (cx,cy) best least

character area height width #holes #strokes center axis inertia

'A' medium high 3/4 1 3 1/2,2/3 90 medium

'B' medium high 3/4 2 1 1/3,1/2 90 large

'8' medium high 2/3 2 0 1/2,1/2 90 medium

'0' medium high 2/3 1 0 1/2,1/2 90 large

'1' low high 1/4 0 1 1/2,1/2 90 low

'W' high high 1 0 4 1/2,2/3 90 large

'X' high high 3/4 0 2 1/2,1/2 ? large

'*' medium low 1/2 0 0 1/2,1/2 ? large

'-' low low 2/3 0 1 1/2,1/2 0 low

'/' low high 2/3 0 1 1/2,1/2 60 low

Table 4.1: Example features for a sample character set.

instances of these 10 classes as given in Algorithm 1. This structure for classi�cation is

called a decision tree. Decisions shown in the table are easily implemented in a computer

program that has access to the feature values. At each point in the decision process, a small

set of features is used to branch to some other points of the decision process; in the current

example only one feature is used at each decision point. The branching process models the

reduction in the set of possibilities as more features are successively considered.

The current example is used because of its intuitive value. It is naive to suppose that the

decision procedure sketched so far is close to a decision procedure that would perform well

in a real handprinted character recognition system. Reliably de�ning and computing the

number of strokes, for instance, is very di�cult, although we will see a method that might

work in Chapter 10. Moreover, methods from Chapters 3 and 5 are needed to remove some

of the variations in the data before features are extracted. In some controlled industrial

environments, one can set up such simple classi�cation procedures and then adjust the

quantitative parameters according to measurements made from sample images. We should

expect variations of features within the same class and overlap of some features across

classes. Some methods to handle such variation and overlap are studied next.

4.5 Feature Vector Representation

Objects may be compared for similarity based on their representation as a vector of mea-

surements. Suppose that each object is represented by exactly d measurements. The i� th

coordinate of such a feature vector has the same meaning for each object A; for example,

the �rst coordinate might be object area, the second coordinate the row moment �

rr

de�ned

in the previous chapter, the third coordinate the elongation, and so on. It is convenient for

each measurement to be a real or oating point number. The similarity, or closeness, be-

tween the the feature vector representations of two objects can then be described using the

Euclidean distance between the vectors de�ned in Equation 4.1. As is shown in Figure 4.4

and discussed in the next section, sometimes the Euclidean distance between an observed

vector and a stored class prototype can provide a useful classi�cation function.
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input: feature vector with [ #holes, #strokes, moment of inertia ]

output: class of character

case of #holes

0: character is 1, W, X, *, -, or /

case of moment about axis of least inertia

low: character is 1, -, or /

case of best axis direction

0: character is -

60: character is /

90: character is 1

large: character is W or X

case of #strokes

2: character is X

4: character is W

1: character is A or O

case of #strokes

0: character is o

3: character is A

2: character is B or 8

case of #strokes

0: character is 8

1: character is B

Algorithm 1: Simple decision procedure to classify characters from a set of eight possible

characters.
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10 Definition The Euclidean distance between two d-dimensional feature vectors x

1

and x

2

is

k x

1

� x

2

k =

s

X

i=1;d

(x

1

[i]� x

2

[i])

2

(4.1)

4.6 Implementing the Classi�er

We now return to the classical paradigm, which represents an unknown object to be classi-

�ed as a vector of atomic features. A recognition system can be designed in di�erent ways

based on feature vectors learned from samples or predicted from models. We examine two

alternate methods of using a database of training samples. Assume that there are m classes

of objects, not including a reject class, and that we have n

i

sample vectors for class i. In

our character recognition example from Algorithm 1, we had m = 10 classes of characters;

perhaps we would have n

i

= 100 samples from each. The feature vectors have dimension

d = 8 in this case.

Classi�cation using the nearest class mean

x

x

x

xx

x
x

xx

x

x
x

xx

x x

x

x

o
o

o
o

o o
o

o
o

o
o

ooo
o

o

o

o
o

o

o
o

o
o

o

x
1

x
2

Class 1

Class 2

Figure 4.4: Two compact classes: classi�cation using nearest mean will yield a low error

rate.

A simple classi�cation algorithm is to summarize the sample data from each class using

the class mean vector, or centroid, �x

i

= 1=n

i

P

j=1;n

i

x

i;j

where x

i;j

is the j � th sample

feature vector from class i. An unknown object with feature vector x is classi�ed as class i if

it is [much] closer to the mean vector of class i than to any other class mean vector. We have

the opportunity to put x into the reject class if it is not close enough to any of the sample

means. This classi�cation method is simple and fast and will work in some problems where

the sample vectors from each class are compact and far from those of the other classes. A

simple two class example with feature vectors of dimension d = 2 is shown in Figure 4.4:
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sample vectors of class one are denoted by x and those of class two are denoted by o. Since

there are samples of each class that are equidistant from both class centroids, the error rate

will not be zero, although we expect it to be very low if the structure of the samples well

represents the structure of future sensed objects. We now have one concrete interpretation

for the function boxes of Figure 4.2: the i�th function box computes the distance between

unknown input x and the mean vector of training samples from that class. The training

samples constitute the knowledge K about the class.

Exercise 1 classifying coins

Obtain 10 samples of each coin used in the U.S. (penny, nickle, dime, quarter, half-dollar,

dollar). Using a micrometer, measure the diameter and thickness of each of the 60 samples

to the nearest 0.01 in. and then create a scatter plot of the six classes as done in Figure 4.4.

(Always measure the thickness either at the center or across the edge.) Estimate the error

rate of a classi�er based on the nearest mean computation.

Di�culties can arise when the structure of class samples is complex. Figure 4.5 shows

a case where class samples are well separated, but the structure is such that nearest mean

classi�cation will yield poor results for multiple reasons. First of all, class two (o) is multi-

modal: its samples lie in two separate compact clusters that are not represented well by the

overall mean that lies midway between the two modes. Several of the samples from class

one (x) are closer to the mean of class two than to the mean of class one. By studying the

samples, we might discover the two modes of class two and be able to separate class two into

two subclasses represented by two separate means. While this is simple using a 2D scatter

plot as in Figure 4.5, it may be very di�cult to understand the structure of samples when

dimension d is much higher than 2. A second problem is due to the elongation of classes one

and three. Clearly, samples of class three with large coordinate x

2

are closer to the mean

of class two than they are to the mean of class three. Similarly, samples of class one (x)

with small coordinate x

1

will still be closer to the mean of one of the subclasses of class two,

even if class two is split into two modes. This problem can be reduced by modifying the

distance computation to take into consideration the di�erent spread of the samples along

the di�erent dimensions.

We can compute a modi�ed distance from unknown feature vector x to class mean

vector x

c

by scaling by the spread, or standard deviation, �

i

of class c along each dimension

i. The standard deviation is the square root of the variance.

11 Definition scaled Euclidean distance from x to class mean x

c

:

k x � x

c

k =

s

X

i=1;d

((x[i]� x

c

[i])=�

i

)

2

(4.2)

Scaling is almost always required due to the di�erent units along the di�erent dimen-

sions. For example, suppose we were classifying vehicles using features x[1] = length in feet

and x[2] = weight in pounds: without scaling, the Euclidean distance would be dominated

by the large numbers of pounds, which would overshadow any discrimination due to vehicle
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Figure 4.5: Three classes with complex structure: classi�cation using nearest mean will

yield poor results.

length.

In the case shown in Figure 4.5, with separate mean vectors for the two modes of class

two, such separate class-dependent scaling of the features x

1

and x

2

would yield good clas-

si�cation results. Most cases are not so easy, however. If the ellipses representing the distri-

bution of class samples are not aligned with the coordinate axes, as they are in Figure 4.5,

then coordinate transformations are needed in order to properly compute the distance of

an unknown sample to a class mean. This is discussed below under the Bayesian classi-

�cation scheme. A harder problem results if the set of samples has a curved structure in

d-dimensional space.

Classi�cation using the Nearest Neighbors

A more exible but more expensive method of classi�cation is to classify unknown fea-

ture vector x into the class of the individual sample closest to it. This is the nearest neighbor

rule. Nearest neighbor classi�cation can be e�ective even when classes have complex struc-

ture in d�space and when classes overlap. No assumptions need to be made about models

for the distribution of feature vectors in space; the algorithm uses only the existing training

samples. A brute force approach (algorithm below) computes the distance from x to all

samples in the database of samples and remembers the minimum distance. One advantage

of this approach is that new labeled samples can be added to the database at any time.

There are data structures that can be used to eliminate many unnecessary distance com-

putations. Tree-structured or gridded data sets are two examples that are described in the

chapter references.

A better classi�cation decision can be made by examining the nearest k feature vectors

in the database. k > 1 allows a better sampling of the distribution of vectors in d-space:
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this is especially helpful in regions where classes overlap. It has been shown that in the limit

as the number of samples grows to in�nity, the error rate for even k = 1 is no worse than

twice the optimal error rate. In theory, we should do better with k > 1; but, e�ectively

using a larger k depends on having a larger number of samples in each neighborhood of the

space to prevent us from having to search too far from x for samples. In a two-class problem

using k = 3, we would classify x into the class that has 2 of the 3 samples nearest x. If

there are more than two classes then there are more combinations possible and the decision

is more complex. The algorithm given below classi�es the input vector into the reject

class if there is no majority of the nearest k samples from any one class. This algorithm

assumes no structure on the set of training samples; without such structure, the algorithm

becomes slower with increasing number of samples n and k. Algorithms that use e�cient

data structures for the samples can be found via the references at the end of the chapter.

S is a set of n labeled class samples s

i

where s

i

:x is a feature vector and s

i

:c is its integer

class label.

x is the unknown input feature vector to be classi�ed.

A is an array capable of holding up to k samples in sorted order by distance d.

The value returned is a class label in the range [1;m]

procedure K Nearest Neighbors(x;S)

f

make A empty;

for all samples s

i

in S

f

d = Euclidean distance between s

i

and x;

if A has less than k elements then insert (d; s

i

) into A;

else if d is less than max A

then f

remove the max from A;

insert (d; s

i

) in A;

g

g ;

assert A has k samples from S closest to x;

if a majority of the labels s

i

:c from A are class c

0

then classify x into class c

o

;

else classify x into the reject class;

return(class of x);

g

Algorithm 2: Compute the K-Nearest Neighbors of x and return majority class.

4.7 Structural Techniques

Simple numeric or symbolic features of an object may not be su�cient for recognition. For

example, consider the two characters shown in Figure 4.6. They have identical bounding

boxes, the same numbers of holes and strokes, the same centroid, and the same second

moments in the row and column directions, and their major axis directions are within .1
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radian of being the same. Each of these characters has two bays, which are intrusions of the

background into the character. Each bay has a lid, a virtual line segment that closes up the

bay. The main di�erentiating feature of these two characters is a relationship, the spatial

relationship between these two bays. In the character on the left, the lid of the upper bay is

to the right of the lid of the lower bay. In the character on the right, the lid of the upper bay

is to the left of the lid of the lower bay. This suggests that relationships among primitive

features can be used as higher-level and potentially more powerful features for recognition.

The �eld of structural pattern recognition has developed from this premise.

0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 0

0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 1 0

0 1 0 0 0 1 1 1 0 0

0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 0 0

0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 1 1 1 1 1 1 0

0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 1 0

0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0

Figure 4.6: Two characters that have the same global features but a di�erent structure.

Statistical pattern recognition traditionally represents entities by feature vectors, which

are typically vectors of atomic values, such as numbers and Boolean values (T or F). These

values measure some global aspect of the entities, such as area or spatial moments. Our

character example goes one step further in that it measures the number of holes and the

number of strokes in each character. This implies the existance of a hole-�nding procedure

to �nd and count the holes and of some type of segmentation algorithm that can partition

the character into strokes.

In structural pattern recognition, an entity is represented by its primitive parts, their

attributes, and their relationships, as well as by its global features. Figure 4.7 illustrates

three separate letter A's that have approximately the same structure. Each can be broken

up into 4 major strokes: two horizontal and two vertical or slanted. Each has a hole or

`lake' near the top of the character with a bay below it; the lake and the bay are separated

by a horizontal stroke.

When the relationships among primitives are binary relations, a structural description

of an entity can be viewed as a graph structure. Suppose the following relationships over

strokes, bays, and lakes are useful in recognizing characters:

� CON: speci�es the connection of two strokes

� ADJ: speci�es that a stroke region is immediately adjacent to a lake or bay region
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Figure 4.7: Three A's with similar structure.

� ABOVE: speci�es that one hole (lake or bay) lies above another

Figure 4.8 shows a graph representation of the structural description of the character 'A'

using these three binary relations. Higher-level relations, ie. ternary or even quaternary, can

be used if they can be de�ned to provide even stronger constraints. For example, a ternary

relationship exists among the lake, the horizontal stroke below it, and the bay below the

stroke.

S

B

S S

L

S
CON CON

ADJ

ADJ

ADJ ADJ

ABOVE

CONCON

ADJ ADJ

ADJ

Figure 4.8: A graph structure representing the letter 'A'. 'S','L','B' denote side, lake, bay

respectively.

Structural pattern recognition is often achieved through graph matching algorithms,

which will be covered in Chapter 14. However, the relationship between two primitives can

itself be considered an atomic feature and thus can be used in a feature vector and incorpo-

rated into a statistical decision procedure. One simple way to do this is to merely count the

number of times a particular relationship between two particular feature types (ie. a bay
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class j output by the pattern recognition system

'0' '1' '2' '3' '4' '5' '6' '7' '8' '9' 'R'

'0' 97 0 0 0 0 0 1 0 0 1 1

'1' 0 98 0 0 1 0 0 1 0 0 0

true '2' 0 0 96 1 0 1 0 1 0 0 1

object '3' 0 0 2 95 0 1 0 0 1 0 1

class '4' 0 0 0 0 98 0 0 0 0 2 0

'5' 0 0 0 1 0 97 0 0 0 0 2

i '6' 1 0 0 0 0 1 98 0 0 0 0

'7' 0 0 1 0 0 0 0 98 0 0 1

'8' 0 0 0 1 0 0 1 0 96 1 1

'9' 1 0 0 0 3 0 0 0 1 95 0

Figure 4.9: Hypothetical confusion matrix for digit recognition. 'R' is the reject class.

beneath a horizontal stroke) appears in a pattern. The integer value of the count becomes

a feature for recognition of the overall pattern.

Structural methods are useful for recognition of complex patterns involving many sub-

patterns. They also o�er advantages in higher-level understanding of a scene, especially

when multiple objects are present. From one general viewpoint, structural pattern recogni-

tion together with the other methods of this chapter emcompasses all of computer vision:

within this view, the remaining chapters of the book can be taken to provide more methods

of extracting features and parts from 2D or 3D objects and scenes.

4.8 The Confusion Matrix

12 Definition The confusion matrix is commonly used to report results of classi�cation

experiments. Figure 4.9 gives an example. The entry in row i, column j records the number

of times that an object labeled to be truly of class i was classi�ed as class j.

The confusion matrix diagonal, where i = j, indicates the successes: with perfect classi-

�cation results, all o�-diagonal elements are zero. High o�-diagonal numbers indicate confu-

sion between classes and force us to reconsider our feature extraction procedures and/or our

classi�cation procedure. If we have done thorough testing, the matrix indicates the kinds

and rates of errors we expect in a working system. In the example shown in Figure 4.9, 7 of

1000 vectors input to the system were rejected. Three inputs labeled as 9 were incorrectly

classi�ed as 4, while two inputs labeled as 4 were incorrectly classi�ed as 9. Altogether,

25 of the input vectors were misclassi�ed. Assuming that the test data was independent

of that used to train the classi�cation system, we would have an empirical reject rate of

7=1000 = 0:007 and an (overall) error rate of 25=1000 = 0:025. The error rate for just

9s, however, is 5=100 = 0:05.
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4.9 Decision Trees

When a pattern recognition task is complex and involves many di�erent potential features,

comparing an entire unknown feature vector to many di�erent pattern feature vectors may

be too time consuming. It may even be impossible as in the case of medical diagnosis,

where measurement of a feature usually means a costly and perhaps painful lab test. Use

of a decision tree allows feature extraction and classi�cation steps to be interleaved. The

decision tree is a compact structure that uses one feature (or, perhaps a few features) at

a time to split the search space of all possible patterns. The simple decision procedure of

Algorithm 1 implements the ow of control shown in the decision tree of Figure 4.10. This

tree has nodes that represent di�erent features of the feature vector. Each branching node

has one child per possible value for its feature. The decision procedure selects a child node

based on the value of the speci�ed feature in the unknown feature vector. A child node may

specify another feature to be tested, or it may be a leaf node containing the classi�cation

associated with that path through the tree.

13 Definition A binary decision tree is a binary tree structure that has a decision function

associated with each node. The decision function is applied to the unknown feature vector

and determines whether the next node to be visited is the left child or the right child of the

current node.

In the simplest case with numeric feature values, the decision function at a node merely

compares the value of a particular feature of the unknown feature vector to a threshold

and selects the left child if the value of the feature is less than the threshold and the right

child otherwise. In this case, only the feature to be used and the threshold value need to be

stored in each branch node of the tree. Each leaf node stores the name of a pattern class; if

the decision tree procedure reaches a leaf node, the unknown feature vector is classi�ed as

belonging to that pattern class. Figure 4.11 illustrates this type of decision tree, which was

constructed to correctly classify the training data shown.

The tree of Figure 4.11 was constructed manually by looking at the data and picking

suitable features and thresholds. The training data here is just a toy example; real data is

likely to have many more features and many more samples. It is not uncommon to have

several hundred features and thousands of training samples for real applications such as

medical diagnosis. In this case, an automated procedure for producing decision trees is

needed. Furthermore, for any given set of training samples, there may be more than one

decision tree that can classify them. So it is important to select features that give the best

decision tree by some criterion. Usually a tree that is simpler or one that has fewer levels

and therefore fewer tests is preferred.

Consider the training data and two possible decision trees shown in Figure 4.12. Both

trees can discriminate between the two classes, class I and class II, shown in the training

data. The tree on the left is very simple; it is able to classify a feature vector with only a

single comparison. The tree on the right is larger and requires more comparisons.
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3

#strokes #strokesmoment of

best axis

direction
#strokes

/ 1- X W

A B8

#holes

o

0
1
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2 4

low large

60 900

2
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Figure 4.10: Decision tree that implements the classi�cation procedure of Figure 1
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Training Data Decision Tree

Figure 4.11: Binary decision tree based on a feature and threshold value at each node.
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X Y Z
Class

   C

1 1

1 1 0 I

0 0 1 II

1 0 0 II

1 I

XY

Y
III

I II

II

1 0

1 0

1 0

Training Data Two Possible Decision Trees

Figure 4.12: Two di�erent decision trees that can each classify the given training samples.

Automatic Construction of a Decision Tree

There are a number of di�erent methods for constructing optimal decision trees from

training data, each with its own de�nition of optimality. (See Haralick and Shapiro, Vol.

I, Chapter 4 for an in-depth coverage.) One simple, but e�ective method is grounded in

information theory. The most basic concept in information theory is called entropy.

14 Definition The entropy of a set of events x = fx

1

; x

2

; : : : ; x

n

g where each x

i

is an

event is

H(x) = �

n

X

i=1

p

i

log

2

p

i

(4.3)

where p

i

is the probability of event x

i

.

Entropy can be interpreted as the average uncertainty of the information source. Quin-

lan(1986) used an entropy-based measure called information gain to evaluate features and

produce optimal decision trees.
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Examples of entropy computations for sets of possible events

Consider the set of three possible events with their associated probabilities.

X = f(x

1

; 3=4); (x

2

; 1=8); (x

3

; 1=8)g

The computation of entropy is as follows:

H(x) = �[(3=4)log

2

(3=4) + (1=8)log

2

(1=8) + (1=8)log

2

(1=8)]

= �[(3=4)(�0:415) + (1=8)(�3) + (1=8)(�3)]

= 1:06

Similarly, a set of four equally likely events has entropy 2.0.

X = f(x

1

; 1=4); (x

2

; 1=4); (x

3

; 1=4) (x

4

; 1=4)g

H(x) = �[4 ((1=4)(�2))] = 2

Exercise 2

(a) Compute the entropy of a set of two equally likely events. (b) Compute the entropy of

a set of four possible outcomes with probabilities f1=8; 3=4; 1=16; 1=16g.

Information theory allows us to measure the information content of an event. In par-

ticular, the information content of a class event with respect to each of the feature events

is useful for our problem. The information content I(C;F ) of the class variable C with

possible values fc

1

; c

2

; : : : ; c

m

g with respect to the feature variable F with possible values

ff

1

; f

2

; : : : ; f

d

g is de�ned by

I(C;F ) =

m

X

i=1

d

X

j=1

P (C = c

i

; F = f

j

)log

2

P (C = c

i

; F = f

j

)

P (C = c

i

)P (F = f

j

)

(4.4)

where P (C = c

i

) is the probability of class C having value c

i

, P (F = f

j

) is the probability

of feature F having value f

j

, and P (C = c

i

; F = f

j

) is the joint probability of class C = c

i

and variable F = f

j

. These prior probabilities can be estimated from the frequency of the

associated events in the training data. For example, since class I occurs in two out of the

four training samples (see Figure 4.12), P (C = I) = 2=4 = :5. Since three of the four

training samples have value 1 for feature X, P (X = 1) = 3=4 = :75.

We can use this information content measure to decide which feature is the best one to

select at the root of the tree. We calculate I(C;F ) for each of the three features: X, Y, and

Z.

I(C;X) = P (C = I;X = 1)log

2

P (C = I;X = 1)

P (C = I)P (X = 1)

+ P (C = I;X = 0)log

2

P (C = I;X = 0)

P (C = I)P (X = 0)

+ P (C = II;X = 1)log

2

P (C = II;X = 1)

P (C = II)P (X = 1)
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+ P (C = II;X = 0)log

2

P (C = II;X = 0)

P (C = II)P (X = 0)

= :5log

2

:5

:5� :75

+ 0 + :25log

2

:25

:5� :25

+ :25log

2

:25

:5� :75

= 0:311

I(C; Y ) = :5log

2

:5

:5� :5

+ 0 + :5log

2

:5

:5� :5

+ 0

= 1:0

I(C;Z) = :25log

2

:25

:5� :5

+ :25log

2

:25

:5� :5

+ :25log

2

:25

:5� :5

+ :25log

2

:25

:5� :5

= 0:0

Feature Y , which has an information content of 1.0, gives the most information in deter-

mining class and so should be selected as the �rst feature to be tested at the root node of

the decision tree. In the case of this simple example, the two classes are completely dis-

criminated and the tree is complete with a single branch node. In the more general case, at

any branch node of the tree when the selected feature does not completely separate a set of

training samples into the proper classes, the set of samples is partitioned according to the

decision procedure at that node and the tree construction algorithm is invoked recursively

for the subsets of training samples at each of the child nodes for which more than one class

is still present.

The algorithm described here was meant to operate on a decision tree like the one of

Figure 4.10, a general tree that has branches for each possible value of the feature being

tested at a node. In order to adapt it to the binary threshold type tree like the one of Figure

4.11, the information content of each feature-threshold pair would have to be considered for

each possible threshold. Although this sounds like an in�nite set of possibilities, only a �nite

number of values for each feature appear in the training data, and this �nite set is all that

need be considered.

The above example is very simple, but it is possible to automatically construct real,

useful decision trees on tens or even hundreds of features. Consider again the character

recognition problem, but this time for more di�cult, hand-printed characters. Some useful

features for this type of characters are lakes, bays, and lids, as discussed in Section 4.6. Lakes

are holes in the character (regions of label 0 completely surrounded by character pixels of

label 1), bays are intrusions into the character (regions of label 0 that are only partially

surrounded by character pixels of label 1), and lids are segments that can be used to close up

the bays. Figure 4.13 shows a hand-printed character six (a), its bay and lake features (b),

and its lid feature (c). The operations of mathematical morphology described in Chapter

3 can be used to extract these useful primitive features. From them, the following numeric

features can be computed:

� lake num: the number of lakes extracted

� bay num: the number of bays extracted
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a) original b) bay and lake c) lid

Figure 4.13: a) Image of a hand-printed character six; b) the bay (above) and lake (below)

extracted by morphological image processing; c) the lid of the bay extracted by further

morphological processing.

� lid num: the number of lids extracted

� bay above bay: Boolean feature that is true if any bay is completely above another

� lid rightof bay: Boolean feature that is true if any lid is completely to the right of

a bay

� bay above lake: Boolean feature that is true if any bay is completely above a lake

� lid bottom of image: Boolean feature that is true if the lowest point of any lid is

within a few pixels of the lowest point of the whole character

With su�cient training data, these features can be used to construct a decision tree that

can classify the hand-printed numeric digits. Figure 4.14 illustrates a sample set of training

data for the digits zero through nine.

Exercise 3 Decision tree construction

Given the training data shown in Figure 4.14 write a program that uses information content

to construct a decision tree to discriminate among the ten digit classes. How well does

the tree constructed on all 40 samples work on the training data? What happens if you

construct the tree from the last 20 samples and then test it on the �rst 20 samples?

Exercise 4

(a) Describe how to extract a lake using morphological image processing from Chapter 3.

(b) Describe how to extract a lid, given that a bay has already been identi�ed.

4.10 Bayesian decision-making

We examine how the knowledge of probability distributions can be used to make classi�-

cation decisions with least expected error rate. Suppose we take a single measurement x
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lake bay lid bay lid bay lid class

num num num above rightof above bottomof

bay bay lake image

1 0 0 F F F F 0

1 0 0 F F F F 0

0 0 0 F F F F 1

0 2 2 F T F T 2

0 2 2 T F F F 3

1 1 1 F F F T 4

1 1 1 F T T F 6

0 2 2 T T F F 2

0 2 2 T T F T 4

0 1 1 F F F F 7

0 0 0 F F F F 1

1 0 0 F F F F 0

1 1 1 F F F F 9

0 2 2 T T F F 2

1 1 1 F F F F 9

0 1 1 F F F F 1

0 2 2 T F F T 4

0 2 2 T T F F 5

1 1 1 F T T F 6

0 2 2 T F F F 3

0 1 1 F F F F 1

1 0 0 F F F F 0

0 2 2 T T F F 5

1 1 1 F T T F 6

0 1 1 F F F T 7

2 0 0 F F F F 8

1 1 1 F F F F 9

1 0 0 F F F F 0

2 0 0 F F F F 8

1 1 1 F T T F 6

0 2 2 F T F F 7

1 1 1 F F F F 9

1 0 0 F F F F 0

0 2 2 T F F F 3

0 2 2 T T F F 5

0 2 2 T T F F 2

0 2 2 T T F F 2

0 1 1 F F F F 1

0 1 1 F F F F 7

0 2 2 T T F F 5

0 2 2 T F F T 4

0 2 2 T F F F 3

Figure 4.14: Training data for hand-printed characters.
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from an infrared image of a dark red cherry and use it to determine whether the cherry is

bruised or not. An unbruised cherry is in class !

1

, while a bruised cherry is in class !

2

.

Also, suppose that we have studied a very large number of surface elements from a large

number of bruised and unbruised cherries, so that we have the knowledge captured in the

distribution functions shown in Figure 4.15. The curve at the right, p(xj!

1

), shows the

distribution of measurement x over a large number of surface samples of unbruised cherries.

The curve on the left, p(xj!

2

), shows the distribution of measurement x over a large number

of bruised surface samples. The data has been normalized so that the area under each curve

is 1.0, making each a probability distribution. (Bruised tissue contains water, which absorbs

infrared radiation more than unbruised tissue and thus low reectance is much more likely

for those cherries. The water content varies and so does the darkness of the skin color,

causing the distributions to overlap { some dark unbruised cherries will reect similar to

some bright bruised cherries.)

x

p( x )

2
p ( x | w   )

p ( x | w   )
1

t

bruised

unbruised

false dismisalsfalse alarms

Figure 4.15: Distributions for intensity measurement x conditioned on whether x is taken

from an unbruised or bruised cherry.

If bruised cherries are as likely to occur as unbruised ones, and if all classi�cation errors

cost us the same, then we can make the decision !

1

whenever x > t and !

2

otherwise. For

such a decision policy, the hatched area to the right of t represents (twice) the false dismisal

rate: this is the probability of getting the acceptably high measurement x from a bruised

cherry. The area is twice the false dismissal rate because of the assumption that the a priori

probability for each density is 0.5, and thus each density should be scaled down so that the

total area under the curve is 0.5. The hatched area to the left of t represents (twice) the

false alarm probability: this is the probability that a good cherry will be classi�ed as bruised

because x < t. Because bruised and unbruised cherries are assumed to be equally likely to

occur as input to our system, each curve would actually represent only 0.5 of the overall

probability so all areas are shown to be twice their actual size. The total error is the total
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hatched area under the curves. It is important to observe that moving decision threshold t ei-

ther to the left or to the right will result in a greater hatched area and hence a greater error.

The example above considered only the special case of two equally likely classes with

errors of equal cost. Now we extend the method to cover the case of m classes all with

possibly di�erent a priori probabilities. We keep the simplifying assumption that all errors

are equally costly. Using Bayesian decision-making, we classify an object into the class to

which it is most likely to belong.

15 Definition A Bayesian classi�er classi�es an object into the class to which it is most

likely to belong based on the observed features.

In order to compute the likelihoods given the measurement x, the following distributions

are needed.

class conditional distribution : p(xj!

i

) for each class !

i

(4.5)

a priori probability : P (!

i

) for each class !

i

(4.6)

unconditional distribution : p(x) (4.7)

If all of the classes !

i

are disjoint possibilities covering all possible cases, we can apply

Bayes' rule to compute a posteriori probabilities for each of the classes given the a priori

probabilities of the classes and the distributions of x for each class.

P (!

i

jx) =

p(xj!

i

)P (!

i

)

p(x)

=

p(xj!

i

)P (!

i

)

P

i=1;m

p(xj!

i

)P (!

i

)

(4.8)

Returning to the classi�er sketched in Figure 4.2, inside each of the class computation

boxes we make f

i

(x;K) = P (!

i

jx), which by Bayes Rule in Equation 4.8 can be computed

as p(xj!

i

)P (!

i

)=p(x). Since p(x) is the same for all the class computation boxes, we can

ignore it and just make the classi�cation decision !

i

for the maximum p(xj!

i

)P (!

i

). To

design our Bayes classi�er, we must have as knowledge K the prior probability of each class

P (!

i

) and the class conditional distribution of p(xj!

i

). Having such knowledge allows us to

design for optimal future decisions. It is often di�cult to establish these prior probabilities.

For example, how would we know the probability that an arbitrary cherry entering our sort-

ing machine is a bruised cherry? If this varies with the weather and picking crews, it make

take too much sampling work to obtain the needed information whenever conditions change.

Parametric Models for Distributions

In practice, we must implement the computation of p(xj!

i

) in some manner. An em-

pirical method is to quantize the range of x and record the frequency of occurences of x

in the samples for each interval and store the result in an array or histogram. One could

�t a smooth spline function to this data to produce a probability function valid for all real

x. Note that we need to scale our results so that the sum over all possible values of x is

1.0. If we observe that the distribution of x follows some known parametric model, then

we can represent the distribution by the small number of parameters that characterize it.

Poisson, exponential, and normal (or Gaussian) distributions are commonly used. A nor-

mal distribution is the well-known \bell-shaped curve" sometimes used to assign grades in

college courses.
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16 Definition A normal distribution characterized by mean � and standard deviation

� is de�ned as follows.

p(x) = N (�; �)(x) =

1

p

2��

exp[�

1

2

(

x� �

�

)

2

] (4.9)

A reference in statistics can be consulted for use of the �

2

test to decide whether or

not the sample data can actually be modeled well using the normal (or other) distribution.

(For example, see the text by Hogg and Craig in the references.) It is easy to compute

the mean and standard deviation from sample data and hence derive a normal distribution

model. Many implementations will use the normal model because of its simplicity and

because of other convenient mathematical properties, even when it is known to be a coarse

approximation to the actual data.

Exercise 5

How could we estimate the following a priori probabilties? (a) that a customer in a market

will buy spinach; (b) that a person at an ATM machine is an imposter; (c) that a just picked

dark red cherry is bruised; (d) that a person over 40 years old has stomach cancer?

By using a parametric model, such as the normal distribution, to model a distribution

of class samples, simple formulas are available for comparing probabilities for Bayesian

decision-making as implemented in Figure 4.2. Once the distributions p(xj!

i

) are known

for each class i, Figure 4.16 can be used to set the thresholds on values of x to separate the

classes. Moreover, the probability model can be directly used to estimate the probability of

error because there is now a formula for the error regions shown in Figure 4.15.

Exercise 6 classifying coins B

Refer to the previous exercise, which required measuring diameter and thickness of U.S.

coins. Use the data for only the pennies, nickles, and dimes. (a) Let feature x be the

thickness of the coin. Compute the mean and stardard deviation for each of the three

classes. Are there thresholds t

1

and t

2

that would separate the classes and give an overall

error rate of less than 5%? Explain. (b) Repeat (a) using x as the diameter of the coin.

4.11 Decisions using Multidimensional Data

In many real-world problems being tackled today, a dimension of d = 10 or more is com-

mon. As we saw previously, the Nearest Neighbor Classi�cation procedure is de�ned for

feature vectors of any dimension d. There are parametric probability models for multidi-

mensional feature vectors x; the reader should consult the references for their mathematical

treatment. Here, we abstractly discuss the concept of multidimensional structure. A good

intuitive grasp will reach a long way into the exciting current research cited in the references.

Consider two classes of samples in three dimensions, each shaped like a tree, with the

two trees growing together. Class one data is shaped like a maple tree and is approximately

a large sphere. Class two data is shaped like a pine, taller and much narrower than the

maple, it is approximately an ellipsoid with major axis much larger than its two minor axes.

Class one samples correspond to the leaves of the maple, while class two samples correspond
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0 321-3 -2 -1
x

p ( x )

t

p ( x < t )

p ( x )  =  N ( µ , σ )  = N ( 0 , 1 )

t p(x<t) t p(x<t) t p(x<t)

-3.0 0.0014 -2.0 0.0227 -1.0 0.1587

-2.9 0.0019 -1.9 0.0287 -0.9 0.1841

-2.8 0.0026 -1.8 0.0359 -0.8 0.2119

-2.7 0.0035 -1.7 0.0446 -0.7 0.2420

-2.6 0.0047 -1.6 0.0548 -0.6 0.2743

-2.5 0.0062 -1.5 0.0668 -0.5 0.3085

-2.4 0.0082 -1.4 0.0808 -0.4 0.3446

-2.3 0.0107 -1.3 0.0968 -0.3 0.3821

-2.2 0.0139 -1.2 0.1151 -0.2 0.4207

-2.1 0.0179 -1.1 0.1357 -0.1 0.4602

0.0 0.5000

Use symmetry to extend the table values from 0.0 to 3.0. For example,

p ( -2.0 < x < 1.0 ) = p ( -2.0 < x < 0.0 ) + p ( 0.0 < x < 1.0 )

= [ p ( x < 0.0 ) - p ( x < -2.0 ) ] + p ( -1.0 < x < 0.0 )

[ 0.5000 - 0.0227 ] + 0.1587 = 0.6360.

Figure 4.16: Normal distribution with mean � = 0 and standard deviation � = 1.
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Exercise 7 On error rates due to thresholding

This exercise deals with the potential error in area computations due to the thresholding of

an image in an attempt to separate an object from background. Make the following set of

assumptions.

� The image of some object covers PRECISELY 3932 pixels of the 512x512 pixel image.

(There are no mixed pixels; object boundaries correspond to pixel boundaries exactly.

There is no blurring of neighboring pixels due to the lens.)

� Due to variations in its surface, the intensity of pixels of the image of the object is

distributed as N(80,5) (this means normally distributed with mean 80 and standard

deviation 5).

� Similarly, background intensity is distributed as N(50,10).

� The grey level of any single pixel is determined without regard to the grey level of

neighboring pixels.

1. If the image is thresholded at intenisty 70 so that LABEL[r; c] = 1 if I[r; c] >= 70

and LABEL[r,c] = 0 otherwise, what is the expected number of pixels labeled as

OBJECT?

2. Where in the image are the pixels labeled BACKGROUND that truly should be OB-

JECT? (These are "false dismissals".)

3. Where in the image are the pixels labeled OBJECT that truly should be labeled

BACKGROUND? (These are "false alarms".)

4. What is the percentage error expected in the computation of object area by merely

counting the number of '1' pixels in the labeled image?

5. * Now suppose that salt and pepper noise is removed from the labeled image by

creating a new image where any pixel is replaced by the values of the neighbors if

all 4-neighbors have the other value. What is the percentage error expected in the

computation of object area by merely counting the number of '1' pixels in this new

labeled image?
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to the needles of the pine. Moreover, suppose the pine tree grows through the crown of

the maple and well above it. The problem of classifying an unknown 3D feature vector x

requires relating it to the known sample structure in the 3D space. If x is within the crown

of the maple, but not near the trunk of the pine, then x is more likely to be maple (class

one). On the other hand, if x is outside the crown of the maple or close to the trunk of

the pine, then x is more likely to be pine (class two). There are positions in the space that

are ambiguous because the samples of the two classes overlap. The most important point

is that an understanding of the structure of the samples in the d-dimensional space allows

us not only to make informed decisions but also to understand our errors. The structure of

the space can be represented by a large database of samples, data structures summarizing

subsets of samples, or by parameterized geometric models of subsets of samples.

A second 3D example is also illuminating. Assume that the samples of class one are

structured as a coil spring, or helix, and that the samples of class two are structured as a

pencil, or rod, positioned as the axis of the helix. (Or, imagine two coil springs intertwined

as they might be in a bin in a hardware store.) These classes are highly structured, in fact,

are one-dimensional, and can be easily separated once their structure is known. A nearest-

mean classifer is useless because the means are the same. Rescaling any of the dimensions

is not going to work either because the samples will still be intertwined. Nearest neighbor

classi�cation will work, but we'll need to store a lot of samples. A practical alternative is to

approximate the helical data by a union of many rods. A rod can be represented simply as

a cylindrical section. Classi�cation can be done by simple geometrical computations that

check to see if unknown x is within any of the cylinders. A better alternative is to use a

formula for the helix parameterized by its axis, radius, and rate of climb.

We note some important points in leaving these thought experiments. First, it is impor-

tant to capture the intrinsic structure and dimensionality of the sample data. Structure can

be represented by geometrical or statistical models: having models allows simple computa-

tions for our decisions as opposed to searching a large unstructured data base of samples.

Secondly, the natural structure of the data may not be aligned with the axes of our mea-

surement space. For example, the axis of the pine tree or the helix need not be along any

of the axes x[1], x[2] or x[3]. Methods for discovering structure or transforming coordinates

are given in the references.

4.12 Machines that Learn

We pause to summarize the important point that the methods discussed in this chapter

provide a basic type of machine learning called supervised learning. We have assumed that

labeled samples were available for all of the classes that were to be distinguished; in other

words, the teacher knew the structure of the data and the desired outcomes. Unsupervised

learning or clustering can also be done; in unsupervised learning, the machine must also

determine the class structure, that is, what the classes are and how many there are. The

reader can consult the references to study this topic.

When nearest-neighbor classi�cation is done, all the data samples are merely input into

the memory and then accessed in order to recognize an unknown object. The recognition

behavior of the machine is completely determined by the training data. When parametric

models are used, the parameters of the class models are learned from the training data and
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then are used to model the entire space of possible objects. In the optional section below,

supervised learning is achieved using discriminant functions that are designed to model the

neurons of living organisms. Machine learning is currently an area of intense research and

development, which the reader is encouraged to explore with additional reading.

4.13 * Arti�cial Neural Nets

Because of their learning capability, neurons of living organisms have been studied for appli-

cation to machine learning. A simple model of a neuron is shown in Figure 4.17. Although

the model is only an approximation to what is known from biology, it has become very

important in its own right as a model for computation. Networks of such model neurons,

called arti�cial neural networks or ANNs, have proved to be successful in many machine

vision problems, especially because of their learning capability. ANNs can learn the complex

structure of samples in multidimensional space using less memory than what is needed for

nearest neighbor classi�cation and can be implemented for massively parallel computation.

Only a limited introduction to ANNs is given here; for more information about this large

and still rapidly growing area, consult the references.
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Figure 4.17: Simple model of a neuron and two possible output conditioning functions

The Perceptron Model

As Figure 4.17 shows, the neuron (AN) receives its d inputs x[j] via dendritic connections

from other neurons, perhaps sensor cells. The cell body sums the inputs after multiplying
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each by a gain factor w[j]. The neuron output y is sent along the single axon, which

eventually branches into many dendritic connections, providing input to other neurons in

the neural net. One model for determining y from the summed scaled inputs to the cell is

to compare the sum with a threshold t and output y = 1 if the sum exceeds the threshold

and output y = 0 otherwise. This binary output behavior is shown in the lower left of

Figure 4.17. To get a smooth output behavior between 0 and 1, the sigmoid function,

shown in the lower right of the �gure, can be used. The parameter � is the slope or gain

at x = t, which determines how the input value is scaled to compute the output value near

x = t. For notational and programming convenience, the negative of the threshold t for the

neuron is stored as w[0] and its corresponding input x[0] is set to 1.0 giving Equation 4.10.

The neuron learns by adapting the weights w[j] to the input vectors x that it experiences.

y = g(

X

j=0;d

w[j]x[j]) (4.10)

Exercise 8 simulating an AN

(a) Study the behavior of an AN with two inputs x[1] and x[2], with weights w[1] = 0:8

and w[2] = 0:3, threshold t = 1:0, and step function g(x) at the output. Make a plot of

the results by plotting a '1' when the output is 1 and a '0' when the output is 0 for the 16

possible input combinations where both x[1] and x[2] take values 0,1,2,3. (b) Create another

plot, this time using the smooth sigmoid function with � = 4, keeping all other elements of

the problem the same. Note that the outputs will now be real numbers rather than just 0

or 1.

Exercise 9 AND, OR, and NOT gates using an AN

1. Design a single AN that has the same behavior as an OR gate. Let x[1] and x[2] be

the two inputs that can have Boolean values of 0 or 1 only. The output of the AN

should be 1 when either or both of the inputs have value 1, and should be 0 when

both inputs are 0. Recall that x[0] = 1 and that the threshold is �w[0]. Complete

the set of weights to de�ne the AN. Plot the four input combinations using 2D axes

and show the decision boundary implemented by the AN.

2. Repeat the above question for an AND gate. The output of an AND gate is 1 only

when both inputs are 1.

3. Show how a single input AN can behave as a NOT gate. If the input to the NOT gate

is 0 then the output is 1, and if the input is 1 then the output is 0.

The computational capability of the simple arti�cial neuron is of great interest both

in theory and practice. From Exercise 9 we learn that an AN can model AND, OR, and

NOT gates. The signi�cance of this is that any Boolean function can be implemented by

cascading several ANs. From Exercise 10 we learn that a single AN cannot even implement

the simple exclusive or function. Many other important functions cannot be implemented

by a single AN: results published by Minski and Pappert (1987) discouraged research for a

period. After a few years there was a spate of successful work with multilayer ANNs, which

are more complex and not as limited in computational capability. We leave the theory of
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the computational capabilities of ANNs to further reading and return to look at a simple

version of a training algorithm for a single AN.

Assume that two classes of 2D samples can be separated by a line: this would be the case

for Figure 4.4 if we removed the single 'X' and 'O' from the overlap area. Clearly, one could

take the parameters of the separating line and construct a neuron to make the classi�cation

decision. For 3D samples, we would use a separating plane; in d dimensions, we would need

a hyperplane, but the concept and construction would be the same. Rather surprisingly, if a

separating hyperplane exists for a two-class problem, then a simple learning algorithm exists

to �nd the hyperplane formula from training samples from the two classes. The algorithm

is given below. Proof that the algorithm converges to a separating hyperplane is beyond

the scope of this text but can be found in Duda and Hart (73).

The perceptron learning algorithm begins with a random set of weights (including the

threshold). It cycles through the labeled samples x and whenever the weight vector (percep-

tron) gives a positive output for a sample from Class 1, it subtracts gain � x from the weight

vector. Similarly, if there is a negative output for a sample from Class 2, then gain � x is

added to the weight vector. This policy moves the current separating line in the appropriate

direction according to what was learned from the current sample. The gain controls the size

of the change. The procedure training pass carries out these adjustments. After all training

samples are processed in one pass, the procedure check samples is called to count how many

samples are misclassi�ed by an AN with these weights. If none are misclassi�ed, then the

algorithm exits with a solution. Otherwise, if the maximum allowed passes have not been

done, then another training pass is made, this time with a halved gain factor. There are

other implementations of the detailed control for the general algorithm.

Figure 4.18 shows the output from a program that implements the perceptron learning

algorithm. By construction, all the Class 1 samples are below the line y = 1� x, while all

Class 2 samples are above that line. There is a corridor of space between these samples and

the algorithm very quickly �nds the line �1 + 5=4x

1

+ 5=4x

2

= 0 to separate the classes.

As the output shows, each sample from Class 1 produces a negative response while each

sample from Class 2 produces a positive response.

Although the basic learning algorithm is simple, there are some nontrivial aspects. (1)

What sequence of samples should be used to learn fast? Theory states that to guarantee

convergence, each sample may have to be presented an arbitrary number of times. Some

algorithms repeat training on a given sample until it is correctly classi�ed and then move on

to others. (2) Convergence will be a�ected by the gain factor used. The program used for

the example output halved the gain factor with each pass through all the training samples.

(3) For better performance on future samples, it may pay for the algorithm to search for

a best line between the classes rather than just any line. (4) When training is taking a

long time, how can we know whether or not it is due to the samples being inseparable? (5)

How can we modify the learning algorithm so that in the case of samples that are linearly

inseparable, we can �nd a line that yields the least misclassi�cations? These issues are left

for possible outside research and experiments by the reader.

The Multilayer Feed-forward Network

A feed-forward network is a special type of ANN where each neuron in the network is
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Compute weight vector w to discriminate Class 1 from 2.

S1 and S2 are sets of n samples each.

gain is a scale factor used to change w when x is misclassi�ed.

max passes is maximum number of passes through all training samples.

procedure Perceptron Learning(gain;max passes;S1;S2)

f

input sample sets S1 and S2;

choose weight vector w randomly;

\let NE be the total number of samples misclassi�ed"

NE = check samples ( S1;S2;w);

while ( NE > 0 and passes < max passes )

f

training pass ( S1;S2;w;gain);

NE = check samples ( S1;S2;w);

gain = 0.5 * gain;

passes = passes + 1;

g

report number of errors NE and weight vector w;

g

procedure training pass ( S1;S2;w;gain);

f

for i from 1 to size of Sk

f

\scalar, or dot, product � implements AN computation"

take next x from S1;

if ( w � x > 0 ) w = w � gain � x;

take next x from S2;

if ( w � x < 0 ) w = w + gain � x;

g

g

Algorithm 3: A Perceptron Learning Algorithm for two linearly separable classes

Exercise 10 Perceptron to implement exclusive or (XOR)

Show that a single AN cannot make the exclusive OR decision by plotting the following

input data and trying to �nd a separating line. The inputs giving a positive response are

(0, 1), ( 1, 0) and the inputs giving a negative response are (0, 0), (1, 1).

Exercise 11 Program the perceptron learning algorithm

Write a program to implement the perceptron learning algorithm for arbitrary d-dimensional

feature vectors x. Test it using 2D vectors and show that it can learn to discriminate as an

OR gate and an AND gate. Show that learning does not converge for an XOR gate. Test on

the following two classes of synthetic 3D samples: Class one is some set of random points in

the �rst octant ( x

1

; x

2

; x

3

all positive ) while Class two is some set of points in any other

octant.
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Class 1 = { ( 0 , 0.5 ), ( 0.5 , 0 ), ( 0 , 0 ), ( 0.25 , 0.25 ) }

Class 2 = { ( 0 , 1.5 ), ( 1.5 , 0 ), ( 0.5 , 1 ), ( 1 , 0.5 ) }

Initial gain= 0.5

Limit to number of passes= 5

Number of samples in Class1= 4; Number of samples in Class2= 4

Training phase begins with weights: -1 0.5 0.5

=====Adjust weights=====: gain= 0.5

pattern vector x = 1 0 1.5

Input Weights: -1 0.5 0.5

Output Weights: -1 0.5 1.25

=====Adjust weights=====: gain= 0.5

pattern vector x = 1 1.5 0

Input Weights: -1 0.5 1.25

Output Weights: -1 1.25 1.25

Weight Vector is: -1 1.25 1.25 Classification for Class = 1

Input Vector x / Response / Error?

1 0 0.5 -0.375 N

1 0.5 0 -0.375 N

1 0 0 -1 N

1 0.25 0.25 -0.375 N

Weight Vector is: -1 1.25 1.25 Classification for Class = 2

Input Vector x / Response / Error?

1 0 1.5 0.875 N

1 1.5 0 0.875 N

1 0.5 1 0.875 N

1 1 0.5 0.875 N

Errors for Class1: 0 Errors for Class2: 0

Final weights are: -1 1.25 1.25

Figure 4.18: Output of computer perceptron learning program that learns the linear dis-

criminant between two linearly separable classes.



Shapiro and Stockman 35

x
1

x
2

OR

AND x
21

x
22

-1x   + 1x
21 22

threshold = 0

XOR ( x   , x   )
1 2

x      x      XOR

0     0          0

0     1          1

1     0          1

1     1          0

AND  and  OR

implemented

as in the exercises

1 2

Figure 4.19: Implementation of XOR using a feedforward ANN

located at some level l. A neuron at level l receives input from all neurons of level l� 1 and

feeds its output to all neurons at level l+1. Refer to Figure 4.20. We can model the inputs

to lowest level 1 neurons as sensor inputs and the outputs from highest level L neurons

as classi�cation results. The classi�cation can be taken to be that c where output y[c] is

highest; or, all outputs can be considered to be a fuzzy classi�cation. ANs between levels 1

and L are called hidden units. There is no feedback from any level to a lower level, thus the

term \feed-forward". Because of this, the ANN works like a combinational circuit in the

sense that its outputs are computed from its inputs without the use of memory about the

prior sequence of inputs.

Previous exercises showed that single arti�cial neurons could have behavior equivalent

to AND, OR, and NOT logic gates. This immediately implies that feed-forward layers of

ANs can implement any combinational logic function. Thus, such networks are surprisingly

powerful and can simulate the behavior of many di�erent computer programs. Moreover,

since ANs are not limited to Boolean values, they can represent very complex geometrical

partitions of d�dimensional space and can adaptively learn such structure from training

samples. Figure 4.19 shows how a feedforward ANN can compute the exclusive OR func-

tion, something that was impossible with a single AN. The �rst layer uses ANs to implement

AND and OR as in the exercises. There is only one AN at the last level: it has weight vector

w = [0; �1; 1] and outputs a 1 if and only if �1x

1

+1x

2

is positive. In order to see how a

multilayer ANN can capture the geometric structure of a complex set of samples, the reader

should do the following exercises.

Exercise 12 an ANN for a triangular class structure in 2D

Construct a feed-forward ANN that yields output of 1 for all 2D points x inside the triangle

with vertices (3,3), (6,6) and (9,1) and output of 0 for all 2D points outside of the triangle.

Use the step function version of g(x). Hint: use three ANs at the �rst level to establish the

class boundaries that are the sides of the triangle and use one second level AN to integrate

the three outputs from the �rst level.
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Exercise 13 an ANN for a 3-class problem

Show how a 2 layer feed-forward network can recognize 2D input vectors from the following

disjoint classes. Class 1 vectors are inside some triangle; class 2 vectors are inside some

square, and class 3 vectors are inside some pentagon. Using the result of the above exercise,

argue that an ANN exists to recognize each individual class versus its complement (you do

not have to work with speci�c lines or equations, just call the subnetworks triangle, square

and pentagon). The second layer output indicates the class of the input to the �rst layer.

A feed-forward network can learn by adapting its weights to a sequence of training

samples during a learning phase. A learning algorithm, called the back propagation algo-

rithm propagates classi�cation errors from the output layers back toward the input layers.

The sigmoid function is used to condition the output rather than thresholding in order to

provide smooth control of the input/output relationship. Implementation and use of the

back-propagation algorithm can be found in the references. Recently, the variety of suc-

cessful applications of backpropagation and other learning algorithms has provided renewed

excitement to the �elds of both pattern recognition and machine learning. Consult the ref-

erences to learn of other types of networks and their many applications.

. . .

. . .

. . .
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w
ij
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w
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Figure 4.20: A multilayered feed-forward arti�cial neural network: all neurons in level l

receive input from all neurons of level l � 1 and feed output to all neurons of level l + 1.
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4.14 References

The early text by Duda and Hart (1973) is still a valuable reference for the problems and

methods of classical statistical pattern recognition (there is a new edition). Another classical

text is that of Fukunaga (1972,1990). These texts can be consulted for development of the

Bayes classi�er theory for d-dimensional feature vectors and they show the importance of

the covariance matrix for modeling multidimensional structure. There are several good

introductory texts on probability and statistics { one is by Hogg and Craig (1970) and

another is by Feller (1957) { where one can study the theory of distributions such as the

normal and chi-squared distributions. Jain et al (2000) is a survey of statistical pattern

recognition containing many recent citations of contributions.

The eigenvectors of the covariance matrix give the natural directions of ellipsoidal clusters

in space, while the corresponding eigenvalues give the spread of the samples. In addition,

several ways of characterizing probability density are given. The recent texts by Schalko�

(1992) and Schurmann (1996) cover syntactic and structural pattern recognition in addition

to statistical pattern recognition. A broad but brief treatment of ANNs can be found in

the tutorial by Jain et al (1996); more extensive development is available in the texts by

Haykin (1994), Hertz et al (1991) and by Schurmann (1996). The text by Tanimoto (1995)

gives a good treatment of neural networks within the context of other learning schemes and

also shows how to use symbolic features for input: implementations for both perceptron

learning and back-propagation are given in LISP. For an exciting theoretical treatment on

what perceptrons can and cannot compute, consult Minsky and Papert (1989) or the original

edition (1969).
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