
Chapter 3

Binary Image Analysis

In a number of applications, such as document analysis and some industrial machine vision
tasks, binary images can be used as the input to algorithms that perform useful tasks. These
algorithms can handle tasks ranging from very simple counting tasks to much more com-
plex recognition, localization, and inspection tasks. Thus by studying binary image analysis
before going on to gray-tone and color images, one can gain insight into the entire image
analysis process.

In this chapter, the basic operations of binary machine vision are described. First, a
simple object-counting algorithm is used to show the reader how a very simple algorithm
can be used to accomplish a useful task. Next we discuss the connected components la-
beling operator, which gives each separate connected group of pixels a unique label and
is a predecessor to most later steps of processing. Then a set of thinning and thickening
operators is introduced. The operators of mathematical morphology can be used to join
and separate components, close up holes, and �nd features of interest in an image . Once a
set of components has been isolated, a number of important properties of each component
can be computed for use in higher-level tasks such as recognition and tracking. A set of
basic properties is de�ned and the accuracy of the algorithms that compute them discussed.
Finally, the problem of automatically thresholding a gray-scale or color image to produce a
useful binary image is studied.

3.1 Pixels and Neighborhoods

A binary image B can be obtained from a gray scale or color image I through an operation
that selects a subset of the image pixels as foreground pixels, the pixels of interest in an
image analysis task, leaving the rest as background pixels to be ignored. The selection op-
eration can be as simple as the thresholding operator that chooses pixels in a certain range
of gray-tones or subspace of color space or it may be a complex classi�cation algorithm.
Thresholding will be discussed at the end of this chapter, while more advanced selection
operators will appear at various parts of the text. For the beginning of this chapter, we will
assume that the binary image B is the initial input to our tasks. Figure 3.1 illustrates the
concept with four binary images of hand-printed characters.
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Figure 3.1: Binary images of hand-printed characters.

The pixels of a binary image B are 0's and 1's; the 1's will be used to denote foreground
pixels and the 0's background pixels. The term B[r; c] denotes the value of the pixel located
at row r, column c of the image array. An M � N image has M rows numbered from 0
to M � 1 and N columns numbered from 0 to N � 1. Thus B[0; 0] refers to the value of
the upper leftmost pixel of the image and B[M � 1; N � 1] refers to the value of the lower
rightmost pixel.

In many algorithms, not only the value of a particular pixel, but also the values of
its neighbors are used when processing that pixel. The two most common de�nitions for
neighbors are the four-neighbors and the eight-neighbors of a pixel. The four-neighborhood
N4(r; c) of pixel (r; c) includes pixels (r � 1; c), (r + 1; c), (r; c � 1), and (r; c + 1), which
are often referred to as its north, south, west, and east neighbors, respectively. The eight-
neighborhood N8(r; c) of pixel (r; c) includes each pixel of the four-neighborhood plus the
diagonal neighbor pixels (r�1; c�1), (r�1; c+1), (r+1; c�1), and (r+1; c+1), which can
be referred to as its northwest, northeast, southwest, and southeast neighbors, respectively.
Figure 3.2 illustrates these concepts.
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Figure 3.2: The two most common neighborhoods of a pixel.

Either the four-neighborhood or the eight-neighborhood (or some alternate de�nition)
can be used as the neighborhood of a pixel in various algorithms. To be general, we will say
that a pixel (r0; c0) neighbors a pixel (r; c) if (r0; c0) lies in the selected type of neighborhood
of (r; c).

3.2 Applying Masks to Images

A basic concept in image processing is that of applying a mask to an image. The concept
comes from the image processing operation of convolution, but is used in a general sense
in image analysis as a whole. A mask is a set of pixel positions and corresponding values
called weights. Figure 3.3 shows three di�erent masks. The �rst two (a and b)are square
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Figure 3.3: Three masks that can be applied to an image.

masks, one with equal weights, all of value one and one with unequal weights. The third
mask (c) is rectangular and has equal weights.

Each mask has an origin, which is usually one of its positions. Usually the origins of
symmetric masks, such as a) and b) Figure 3.3, are their center pixels. For nonsymmetric
masks, any pixel may be chosen as the origin, depending on the intended use. The top pixel
of mask c) might be chosen as its origin.

The application of a mask to an input image yields an output image of the same size
as the input. For each pixel in the input image, the mask is conceptually placed on top of
the image with its origin lying on that pixel. The values of each input image pixel under
the mask are multiplied by the weights of the corresponding mask pixels. The results are
summed together to yield a single output value that is placed in the output image at the
location of the pixel being processed on the input. Figure 3.4 illustrates the application of
mask b) of Figure 3.3 to a gray-tone image.

The original gray tone image is shown in Figure 3.4a. Notice that when the center of the
mask lies on top of one of the perimeter pixels of the image, some of the pixels of the mask
lie outside of the image. In order to make the output image come out the same size as the
input, we must add some virtual rows and columns to the input image around the edges. In
the example below, we have added two virtual rows (one above the image and one below)
and two virtual columns (one to the left and one to the right). The values in these virtual
rows and columns can be set arbitrarily to zero or some other constant or, as has been done
here, they can merely duplicate the closest row (or column) to them. Thus the virtual row
added to the top of the input image would duplicate the values 40, 40, 80, 80, 80; the virtual
column on the left would be all 40's; the virtual column on the right would be all 80's; and
the virtual row added to the bottom would again have values 40, 40, 80, 80, 80. The output
image c) produced by the application of the mask b) is a smoothed version of the input a);
however, the values are all much bigger than in the original. To normalize, we divide the
value obtained for each pixel by the sum of the weights in the mask, in this case 16, obtain-
ing the �nal image shown in d). The original and �nal images are shown in gray tone in e)
expanded to 120 � 120 for visibility. Because of the expansion, each pixel in the �nal image
is shown as a 24-pixel strip; thus the smoothness is at a strip level, instead of at a pixel level.
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Figure 3.4: Application of a mask with weights to a gray-scale image.
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Figure 3.5: The 2 by 2 masks for counting the foreground objects in a binary image. The
1's represent foreground pixels, and the 0's represent background pixels.

3.3 Counting the Objects in an Image

Chapter 1 presented an application where it was important to count the number of holes
in an object. Counting the number of foreground objects is an equivalent problem that can
be performed with the same algorithm by merely swapping the roles of the two sets: E and
I. For counting foreground objects, the external corner patterns are 2 by 2 masks that have
three 0's and one 1-pixel. The internal corner patterns are 2 by 2 masks that have three
1's and one 0-pixel. Figure 3.5 illustrates the two sets of masks. Note that the algorithm
expects each object to be a 4-connected set of 1-pixels with no interior holes.

The application of one of these masks to a binary image can be visualized as placing
the mask on the image so that the top left pixel of the mask lines up with the particular
pixel being considered on the image. In this case the mask is de�ning a neighborhood of
the image pixel consisting of the pixel, its neighbor to the right, and the two pixels below
them. If all four image pixels that fall under the mask have exactly the same value as the
corresponding mask pixel, then the type of corner de�ned by that mask is identi�ed with
that image pixel. Suppose that the function external match(L, P) sequences through the
four external masks and returns true if the subimage with top left pixel (L,P) matches one
of them, false otherwise. Similarly, the function internal match(L,P) returns true if the
subimage with top left pixel (L,P) matches one of the internal masks and false otherwise.
The object-counting function count objects(B) takes in a binary image B, loops through
each pixel of the image, excluding pixels of the last row and the last column, where the 2
by 2 mask cannot be placed, and returns the number of objects in the image.

Conventions for de�ning algorithms Pseudo-code for the object-counting procedure
is given below. We will use this syntax for all procedures given in the text. Note that
all routines are called procedures, but those that are functions include a return statement
(as in C) to return a value. To keep the procedures short and simple, we will often use
utility procedures within them such as external match and internal match. The code for
very straightforward utility procedures such as these is usually omitted. We also omit type
declarations, which are language-dependent, but we specify the required types in the text
and explain important variables in comments. Finally, we use global constants for various
sizes rather than clouding the procedure calls with extra arguments.

In the object-counting procedure, the constant MaxRow is the row number of the last
row in the image, while MaxCol is the column number of the last column. The �rst row
and the �rst column are assumed to be row and column zero, the default for C arrays.
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Compute the number of foreground objects of binary image B.
Objects are 4-connected and simply connected.
E is the number of external corners.
I is the number of internal corners.

procedure count objects(B);
f
E := 0;
I := 0;
for L := 0 to MaxRow - 1
for P := 0 to MaxCol - 1
f
if external match(L, P) then E := E + 1;
if internal match(L, P) then I := I + 1;
g ;

return((E - I) / 4);
g

Algorithm 1: Counting Foreground Objects

Exercise 1 E�ciency of counting objects

What is the maxiumum number of times that procedure count objects examines each pixel
of the image? How can procedures external match and internal match be coded to be as
e�cient as possible?

Exercise 2 Driving around corners

Obtain some graph paper to represent a pixel array and blacken some region of connected
squares (keep it small at �rst). The blackened squares correspond to the foreground pixels
and the empty squares correspond to the background. Imagine that the pixels are all
city blocks and you are driving around the blackened region in a clockwise direction. Do
your right turns correspond to E corners or I corners? What about left turns? Is there
a relationship between the number of left turns and the number of right turns made in
driving the complete perimeter? If so, what is it? In driving the entire perimeter, did you
ever cross over or touch a previously visited intersection? Is that ever possible? Why or why
not? Before answering, consider the case of only two blackened blocks touching diagonally
across a single shared intersection. Do your left-right counting rules still hold? Does the
object-counting formula still hold?
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Figure 3.6: A binary image with �ve connected components of the value 1.

3.4 Connected Components Labeling

Suppose that B is a binary image and that B(r; c) = B(r0; c0) = v where either v = 0 or
v = 1. The pixel (r; c) is connected to the pixel (r0; c0) with respect to value v if there is a
sequence of pixels (r; c) = (r0; c0); (r1; c1); : : : ; (rn; cn) = (r0; c0) in which B(ri; ci) = v; i =
0; : : : ; n, and (ri; ci) neighbors (ri�1; ci�1) for each i = 1; : : : ; n. The sequence of pixels
(r0; c0); : : : ; (rn; cn) forms a connected path from (r; c) to (r0; c0). A connected component of
value v is a set of pixels C, each having value v, and such that every pair of pixels in the
set are connected with respect to v. Figure 3.6a) shows a binary image with �ve such con-
nected components of 1's; these components are actually connected with respect to either
the eight-neighborhood or the four-neighborhood de�nition.

1 Definition A connected components labeling of a binary image B is a labeled image

LB in which the value of each pixel is the label of its connected component.

A label is a symbol that uniquely names an entity. While character labels are possi-
ble, positive integers are more convenient and are most often used to label the connected
components. Figure 3.6b) shows the connected components labeling of the binary image of
Figure 3.6a).

There are a number of di�erent algorithms for the connected components labeling op-
eration. Some algorithms assume that the entire image can �t in memory and employ a
simple, recursive algorithm that works on one component at a time, but can move all over
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the image while doing so. Other algorithms were designed for larger images that may not �t
in memory and work on only two rows of the image at a time. Still other algorithms were de-
signed for massively parallel machines and use a parallel propagation strategy. We will look
at two di�erent algorithms in this chapter: the recursive search algorithm and a row-by-row
algorithm that uses a special union-�nd data structure to keep track of components.

A Recursive Labeling Algorithm

Suppose that B is a binary image with MaxRow + 1 rows and MaxCol + 1 columns. We
wish to �nd the connected components of the 1-pixels and produce a labeled output image
LB in which every pixel is assigned the label of its connected component. The strategy,
adapted from the TanimotoAI text, is to �rst negate the binary image, so that all the 1-pixels
become -1's. This is needed to distinguish unprocessed pixels (-1) from those of component
label 1. We will accomplish this with a function called negate that inputs the binary imageB
and outputs the negated image LB, which will become the labeled image. Then the process
of �nding the connected components becomes one of �nding a pixel whose value is -1 in LB,
assigning it a new label, and calling procedure search to �nd its neighbors that have value -1
and recursively repeat the process for these neighbors. The utility function neighbors(L,P)

is given a pixel position de�ned by L and P. It returns the set of pixel positions of all of its
neighbors, using either the 4-neighborhood or 8-neighborhood de�nition. Only neighbors
that represent legal positions on the binary image are returned. The neighbors are returned
in scan-line order as shown in Figure 3.7. The recursive connected components labeling
algorithm is a set of six procedures, including negate, print, and neighbors, which are left
for the reader to code.

1
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6 7 8

a) four-neighborhood b) eight-neighborhood

Figure 3.7: Scan-line order for returning the neighbors of a pixel.

Figure 3.8 illustrates the application of the recursive connected components algorithm
to the �rst (top leftmost) component of the binary image of Figure 3.6.

A Row-by-Row Labeling Algorithm

The classical algorithm, deemed so because it is based on the classical connected components
algorithm for graphs, was described in Rosenfeld and Pfaltz (1966). The algorithm makes
two passes over the image: one pass to record equivalences and assign temporary labels and
the second to replace each temporary label by the label of its equivalence class. In between
the two passes, the recorded set of equivalences, stored as a binary relation, is processed to
determine the equivalence classes of the relation. Since that time, the union-�nd algorithm,
which dynamically constructs the equivalence classes as the equivalences are found, has been
widely used in computer science applications. The union-�nd data structure allows e�cient
construction and manipulation of equivalence classes represented by tree structures. The
addition of this data structure is a useful improvement to the classical algorithm.
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Compute the connected components of a binary image.
B is the original binary image.
LB will be the labeled connected component image.

procedure recursive connected components(B, LB);
f
LB := negate(B);
label := 0;
�nd components(LB, label);
print(LB);
g

procedure �nd components(LB, label);
f
for L := 0 to MaxRow
for P := 0 to MaxCol
if LB[L,P] == -1 then
f
label := label + 1;
search(LB, label, L, P);
g

g

procedure search(LB, label, L, P);
f
LB[L,P] := label;

Nset := neighbors(L, P);
for each (L',P') in Nset
f
if LB[L',P'] == -1
then search(LB, label, L', P');
g

g

Algorithm 2: Recursive Connected Components
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Figure 3.8: The �rst �ve steps of the recursive labeling algorithm applied to the �rst com-
ponent of the binary image of Figure 3.6. The image shown is the (partially) labeled image
LB. The boldface pixel of the image is the one being processed by the search procedure.
Using the neighborhood orderings shown in Figure 3.7, the �rst unprocessed neighhbor of
the boldface pixel whose value is -1 is selected at each step as the next pixel to be processed.

Union-Find Structure The purpose of the union-�nd data structure is to store a collec-
tion of disjoint sets and to e�ciently implement the operations of union (merging two sets
into one) and �nd (determining which set a particular element is in). Each set is stored as
a tree structure in which a node of the tree represents a label and points to its one parent
node. This is accomplished with only a vector array PARENT whose subscripts are the
set of possible labels and whose values are the labels of the parent nodes. A parent value
of zero means that this node is the root of the tree. Figure 3.9 illustrates the tree structure
for two sets of labels f 1,2,3,4,8 g and f 5,6,7 g . Label 3 is the parent node and set label
for the �rst set; label 7 is the parent node and set label for the second set. The values in
array PARENT tell us that nodes 3 and 7 have no parents, label 2 is the parent of label
1, label 3 is the parent of labels 2, 4, and 8, and so on. Note that element 0 of the array is
not used, since 0 represents the background label, and a value of 0 in the array means that
a node has no parent.

The �nd procedure is given a label X and the parent array PARENT . It merely follows
the parent pointers up the tree to �nd the label of the root node of the tree that X is
in. The union procedure is given two labels X and Y and the parent array PARENT . It
modi�es the structure (if necessary) to merge the set containing X with the set containing
Y . It starts at labels X and Y and follows the parent pointers up the tree until it reaches
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Figure 3.9: The union-�nd data structure for two sets of labels. The �rst set contains the
labels f 1,2,3,4,8 g , and the second set contains labels f 5,6,7 g . For each integer label i,
the value of PARENT [i] is the label of the parent of i or zero if i is a root node and has
no parent.

Find the parent label of a set.
X is a label of the set.
PARENT is the array containing the union-�nd data structure.

procedure �nd(X, PARENT);
f
j := X;
while PARENT[j] <> 0
j := PARENT[j];

return(j);
g

Algorithm 3: Find
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Construct the union of two sets.
X is the label of the �rst set.
Y is the label of the second set.
PARENT is the array containing the union-�nd data structure.

procedure union(X, Y, PARENT);
f
j := X;
k := Y;
while PARENT[j] <> 0
j := PARENT[j];

while PARENT[k] <> 0
k := PARENT[k];

if j <> k then PARENT[k] := j;
g

Algorithm 4: Union

the roots of the two sets. If the roots are not the same, one label is made the parent of the
other. The procedure for union given here arbitrarily makes X the parent of Y . It is also
possible to keep track of the set sizes and to attach the smaller set to the root of the larger
set; this has the e�ect of keeping the tree depths down.

The Classical Connected Components Algorithm using Union-Find The union-
�nd data structure makes the classical connected components labeling algorithm more ef-
�cient. The �rst pass of the algorithm performs label propagation to propagate a pixel's
label to its neighbors to the right and below it. Whenever a situation arises in which two
di�erent labels can propagate to the same pixel, the smaller label propagates and each such
equivalence found is entered in the union-�nd structure. At the end of the �rst pass, each
equivalence class has been completely determined and has a unique label, which is the root
of its tree in the union-�nd structure. A second pass through the image then performs a
translation, assigning to each pixel the label of its equivalence class.

The procedure uses two additional utility functions: prior neighbors and labels. The
prior neighbors function returns the set of neighboring 1-pixels above and to the left of a
given one and can be coded for a 4-neighborhood (in which case the north and west neigh-
bors are returned) or for an 8-neighborhood (in which case the northwest, north, northeast,
and west neighbors are returned). The labels function returns the set of labels currently
assigned to a given set of pixels.

Figure 3.10 illustrates the application of the classical algorithm with union-�nd to the
binary image of Figure 3.6. Figure 3.10a) shows the labels for each pixel after the �rst
pass. Figure 3.10b) shows the union-�nd data structure indicating that the equivalence
classes determined in the �rst pass are ff1; 2g; f3;7g;4; 5; 6g. Figure 3.10c) shows the �nal
labeling of the image after the second pass. The connected components represent regions of
the image for which both shape and intensity properties can be computed. We will discuss
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Initialize the data structures for classical connected components.

procedure initialize();
\Initialize global variable label and array PARENT."
f
\Initialize label."
label := 0;
\Initialize the union-�nd structure."
for i := 1 to MaxLab
PARENT[i] := 0;

g

Algorithm 5: Initialization for Classical Connected Components

some of these properties in Section 3.5.

Using Run-Length Encoding for Connected Components Labeling As introduced
in Chapter 2, a run-length encoding of a binary image is a list of contiguous horizontal runs
of 1's. For each run, the location of the starting pixel of the run and either its length or
the location of its ending pixel must be recorded. Figure 3.11 shows a sample run-length
data structure. Each run in the image is encoded by its starting- and ending-pixel loca-
tions. (ROW, START COL) is the location of the starting pixel and (ROW, END COL)
is the location of the ending pixel, LABEL is the �eld in which the label of the connected
component to which this run belongs will be stored. It is initialized to zero and assigned
temporary values in pass 1 of the algorithm. At the end of pass 2, the LABEL �eld contains
the �nal, permanent label of the run. This structure can then be used to output the labels
back to the corresponding pixels of the output image.

3.5 Binary Image Morphology

The word morphology refers to form and structure; in computer vision it can be used to
refer to the shape of a region. The operations of mathematical morphology were originally
de�ned as set operations and shown to be useful for processing sets of 2D points. In this
section, we de�ne the operations of binary morphology and show how they can be useful in
processing the regions derived from the connected components labeling operation.

3.5.1 Structuring Elements

The operations of binary morphology input a binary image B and a structuring element S,
which is another, usually much smaller, binary image. The structuring element represents a
shape; it can be of any size and have arbitrary structure that can be represented by a binary
image. However, there are a number of common structuring elements such as a rectangle of
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Compute the connected components of a binary image.
B is the original binary image.
LB will be the labeled connected component image.

procedure classical with union-�nd(B,LB);
f
\Initialize structures."
initialize();
\Pass 1 assigns initial labels to each row L of the image."
for L := 0 to MaxRow
f
\Initialize all labels on line L to zero"
for P := 0 to MaxCol
LB[L,P] := 0;

\Process line L."
for P := 0 to MaxCol
if B[L,P] == 1 then
f
A := prior neighbors(L,P);
if isempty(A)
then f M := label; label := label + 1; g;
else M := min(labels(A));
LB[L,P] := M;
for X in labels(A) and X <> M
union(M, X, PARENT);

g
g

\Pass 2 replaces Pass 1 labels with equivalence class labels."
for L := 0 to MaxRow
for P := 0 to MaxCol
if B[L,P] == 1
then LB[L,P] := �nd(LB[L,P],PARENT);

g ;

Algorithm 6: Classical Connected Components with Union-Find

Exercise 3 Labeling Algorithm Comparison

Suppose a binary image has one foreground region, a rectangle of size 1000 by 1000. How
many times does the recursive algorithm look at (read or write) each pixel? How many
times does the classical procedure look at each pixel?

Exercise 4 Relabeling

Because equivalent labels are merged into one equivalence class, some of the initial labels
from Pass 1 are lost in Pass 2, producing a �nal labeling whose numeric sequence of labels
often has many gaps. Write a relabeling procedure that converts the labeling to one that
has a contiguous sequence of numbers from 1 to the number of components in the image.
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Figure 3.10: The application of the classical algorithm with the union-�nd data structure
to the binary image of Figure 3.6:

Exercise 5 Run-Length Encoding

Design and implement a row-by-row labeling algorithm that uses the run-length encoding
of a binary image instead of the image itself and uses the LABEL �eld of the structure to
store the labels of the runs.

speci�ed dimensions [BOX(l,w)] or a circular region of speci�ed diameter [DISK(d)]. Some
image processing packages o�er a library of these primitive structuring elements. Figure
3.12 illustrates some common structuring elements and several nonstandard ones.

The purpose of the structuring elements is to act as probes of the binary image. One
pixel of the structuring element is denoted as its origin; this is often the central pixel of a
symmetric structuring element, but may in principle be any chosen pixel. Using the origin
as a reference point, translations of the structuring element can be placed anywhere on the
image and can be used to either enlarge a region by that shape or to check whether or not
the shape �ts inside a region. For example, we might want to check the size of holes by
seeing if a smaller disk �ts entirely within a region, while a larger disk does not.

3.5.2 Basic Operations

The basic operations of binary morphology are dilation, erosion, closing, and opening. As
the names indicate, a dilation operation enlarges a region, while an erosion makes it smaller.
A closing operation can close up internal holes in a region and eliminate \bays" along the
boundary. An opening operation can get rid of small portions of the region that jut out
from the boundary into the background region. The mathematical de�nitions are as follows:
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0 1 2 3 4

0 1 1 0 1 1

1 1 1 0 0 1

2 1 1 1 0 1

3 0 0 0 0 0

4 0 1 1 1 1

ROW START ROW END

0 1 2

1 3 4

2 5 6

3 0 0

4 7 7

(a) (b)

ROW START COL END COL LABEL

1 0 0 1 0

2 0 3 4 0

3 1 0 1 0

4 1 4 4 0

5 2 0 2 0

6 2 4 4 0

7 4 1 4 0

(c)

Figure 3.11: Binary image (a) and its run-length encoding (b) and (c). Each run of 1's is
encoded by its row (ROW) and the columns of its starting and ending points (START COL
and END COL). In addition, for each row of the image, ROW START points to the �rst
run of the row and ROW END points to the last run of the row. The LABEL �eld will hold
the component label of the run; it is initialized to zero.

2 Definition The translation Xt of a set of pixels X by a position vector t is de�ned by

Xt = f x+ t j x 2 Xg (3.1)

Thus the translation of a set of 1's in a binary image moves the entire set of ones by the
speci�ed amount. The translation t would be speci�ed as an ordered pair (�r; �c) where �r
is the amount to move in rows and �c is the amount to move in columns.

3 Definition The dilation of binary image B by structuring element S is denoted by B�S
and is de�ned by

B � S =
[
b2B

Sb (3.2)

This union can be thought of as a neighborhood operator. The structuring element S
is swept over the image. Each time the origin of the structuring element touches a binary
1-pixel, the entire translated structuring element shape is ORed to the output image, which
has been initialized to all zeros. Figure 3.13a) shows a binary image, and Figure 3.13c)
illustrates its dilation by the 3 by 3 rectangular structuring element shown in Figure 3.13b).

To follow the mathematical de�nition, consider the �rst 1-pixel of the binary image B.
Its coordinates are (1,0) meaning row 1, column 0 of the image. The translation S(1;0) means
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1

1

d) e) f)

Figure 3.12: Examples of structuring elements (blanks represent 0's).

that the structuring element S is ORed into the output image so that its origin (which is its
center) coincides with position (1,0). As a result of this OR, the output image (initially all
0) has 1-pixels at positions (0,0), (0,1), (1,0), (1,1), (2,0), and (2,1), which are real positions,
and at positions (0,-1), (1,-1), and (2,-1), which are virtual positions and are ignored. For
the next pixel (1,1) of B, the translation S(1;1) is added to the output by ORing in 1-pixels
at positions (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2). This continues until a
copy of the structuring element has been ORed into the output image for every pixel of the
input image, producing the �nal result of Figure 3.13c).

4 Definition The erosion of binary image B by structuring element S is denoted by B	S
and is de�ned by

B 	 S = f b j b+ s 2 B 8s 2 Sg (3.3)

The erosion operation also sweeps the structuring element over the entire image. At each
position where every 1-pixel of the structuring element covers a 1-pixel of the binary image,
the binary image pixel corresponding to the origin of the structuring element is ORed to
the output image. Figure 3.13d illustrates an erosion of the binary image of Figure 3.13a
by the 3 by 3 rectangular structuring element.

Dilation and erosion are the most primitive operations of mathematical morphology.
There are two more common operations that are composed of these two: closing and open-
ing.

5 Definition The closing of binary image B by structuring element S is denoted by B �S
and is de�ned by

B � S = (B � S) 	 S (3.4)
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a) Binary image B b) Structuring Element S
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c) Dilation B � S d) Erosion B 	 S

1 1 1 1 1 1
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1 1 1 1 1
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1 1 1 1 1

1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

e) Closing B � S f) Opening B � S

Figure 3.13: The basic operations of binary morphology. Foreground pixels are shown as
1's. Background pixels, whose value is 0, are shown as blanks.



Shapiro and Stockman 19

6 Definition The opening of binary image B by structuring element S is denoted B � S
and is de�ned by

B � S = (B 	 S) � S (3.5)

Figure 3.13e illustrates the closing of the binary image of Figure 3.13a by the 3 by 3
rectangular structuring element; Figure 3.13f illustrates the opening of the binary image by
the same structuring element.

Exercise 6 Using elementary operations of binary morphology

A camera takes an image I of a penny, a dime, and a quarter lying on a white background
and not touching one another. Thresholding is used successfully to create a binary image
B with 1 bits for the coin regions and 0 bits for the background. You are given the known
diameters of the coins DP , DD, and DQ. Using the operations of mathematical morphology
(dilation, erosion, opening, closing) and the logical operators AND, OR, NOT, and MINUS
(set di�erence), show how to produce three binary output images: P, D, and Q. P should
contain just the penny (as 1 bits), D should contain just the dime, and Q should contain
just the quarter.

3.5.3 Some Applications of Binary Morphology

Closings and openings are useful in imaging applications where thresholding, or some other
initial process, produces a binary image with tiny holes in the connected components or
with a pair of components that should be separate joined by a thin region of foreground
pixels. Figure 3.14a is a 512 � 512 16-bit gray-scale medical image, Figure 3.14b is the
result of thresholding to select pixels with gray tones above 1070, and Figure 3.14c is the
result of performing an opening operation to separate the organs and a closing to get rid of
small holes. The structuring element used in the opening was DISK(13), and the structuring
element used in the closing was DISK(2).

Binary morphology can also be used to perform very speci�c inspection tasks in industrial
machine vision. Sternberg (1985) showed how a watch gear could be inspected to check

whether it had any missing or broken teeth. Figure 3.15a shows a binary image of a watch
gear. The watch gear has four holes inside of the main object and is surrounded by a number
of teeth, which are individually visible in the image. In order to process the watch gear
images, Sternberg de�ned several special purpose structuring elements whose shapes and
sizes were derived from the physical properties of the watch gear. The following structuring
elements are used in the watch-gear inspection algorithm:

� hole ring: a ring of pixels whose diameter is slightly larger than the diameters of the
four holes in the watch gears. It �ts just around these holes and can be used to mark
a few pixels at their centers.

� hole mask: an octagon that is slightly larger than the holes in the watch gears.

� gear body: a disk structuring element that is as big as the gear minus its teeth.

� sampling ring spacer: a disk structuring element that is used to move slightly
outward from the gear body.
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a) Medical image G

b) Thresholded image B

c) Result of morphological operations

Figure 3.14: Use of binary morphology in medical imaging. The 512 � 512 16-bit medical
image shown in a) is thresholded (at 1070) to produce the binary image shown in b). Opening
with a DISK(13) structuring element and closing with a DISK(2) gives the results shown in
c).
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� sampling ring width: a disk structuring element that is used to dilate outward to
the tips of the teeth.

� tip spacing: a disk structuring element whose diameter spans the tip-to-tip space
between teeth.

� defect cue: a disk structuring element whose purpose is to dilate defects in order to
show them to the user.

Figure 3.15 illustrates the gear-tooth inspection procedure. Figure 3.15a shows the orig-
inal binary image to be inspected. Figure 3.15b shows the result of eroding the original
image with the hole ring structuring element. The result image has 1 pixels in a tiny cluster
in the center of each hole. These are the only pixel locations where the hole ring structuring
element completely overlapped the object region. Figure 3.15c shows the result of dilating
the previous image with structuring element hole mask. The result here is four octagons
covering the original four holes. Figure 3.15d shows the result of ORing the four octagons
into the original binary image. The result is the gear tooth with the four holes �lled in.

The next step is to produce a sampling ring that can be used to check the teeth. It is pro-
duced by taking the image of Figure 3.15d, opening it with structuring element gear body to
get rid of the teeth, dilating that with structuring element sampling ring spacer to bring it
out to the base of the teeth, dilating that with the structuring element sampling ring width
to bring the next image out to the tip of the teeth, and subtracting second to the last result
from the last result to get a ring that just �ts over the teeth. The sampling ring is shown
in Figure 3.15e.

Once we have the sampling ring, it is ANDed with the original image to produce an im-
age of just the teeth, as shown in Figure 3.15f. The gaps are already visible, but not marked.
Dilating the teeth image with the structuring element tip spacing produces the solid ring
image shown in Figure 3.15g which has spaces in the solid ring wherever there are defects in
the teeth. Subtracting this result from the sampling ring leaves only the defects, which are
dilated by structuring element defect cue and shown to the user as large blobs on the screen.

Exercise 7 Structuring element choices

Sternberg used a ring structuring element to detect the centers of the holes in the gear-tooth
inspection task. If your system only supports disk and box structuring elements, what can
you do to detect the centers of the holes?

Exercise 8 Morphological processing application

Suppose a satellite image of a region can be thresholded so that the water pixels are 1's.
However, bridges across reivers produce thin lines of 0's cutting across the river regions. a)
Describe how to restore the bridge pixels to the water region. b) Describe how to detect
the thin bridges as separate objects.

Binary morphology can also be used to extract primitive features of an object that can
be used to recognize the object. For instance, the corners of at two-dimensional objects
can be good primitives in shape recognition. If an object with sharp corners is opened
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a) original image B b) B1 = B 	 hole ring

c) B2 = B1 � hole mask d) B3 = B OR B2

e) B7 (see text) f) B8 = B AND B7

g) B9 = B8 � tip spacing h) RESULT = ((B7 - B9) �
defect cue) OR B9

Figure 3.15: The gear-tooth inspection procedure (courtesy of Stanley R. Sternberg with
permission of Academic Press).



Shapiro and Stockman 23

a) original b) opening c) corners

Figure 3.16: The use of binary morphology to extract shape primitives.

with a disk structuring element, the corners are chopped o� as shown in Figure 3.16. If
the resultant opening is subtracted from the original binary image of the shape, only the
corners remain and can be used in a structural recognition algorithm. A shape matching
system can use morphological feature detection to rapidly detect primitives that are useful
in object recognition.

3.5.4 Conditional Dilation

One use of binary morphology is to identify certain components of a binary image that
satisfy certain shape and size constraints. It is often possible to derive a structuring ele-
ment that when applied to a binary image removes the components that do not satisfy the
constraints and leaves a few 1-pixels of those components that do satisfy the constraints.
But we want the entire components, not just what remains of them after the erosion. The
conditional dilation operation was de�ned to solve this problem.

7 Definition Given an original binary image B, a processed binary image C, and a struc-

turing element S, let C0 = C and Cn = (Cn�1 � S) \ B. The conditional dilation of C

by S with respect to B is de�ned by

C� jB S = Cm (3.6)

where the index m is the smallest index satisfying Cm = Cm�1.

This de�nition is intended for discrete sets of points arising from �nite digital images. It
says that the set C = C0 is repeatedly dilated by structuring element S, and each time the
result is reduced to only the subset of pixels that were 1's in the original binary image B.
Figure 3.17 illustrates the operation of conditional dilation. In the �gure, the binary image
B was eroded by structuring element V to select components in which 3-pixel long vertical
edges could be found. Two of the components were selected, as shown in the result image
C. In order to see these entire components, C is conditionally dilated by D with respect to
the original image B to produce the results.
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Figure 3.17: The operation of conditional dilation.

3.6 Region Properties

Once a set of regions has been identi�ed, the properties of the regions become the input to
higher-level procedures that perform decision-making tasks such as recognition or inspec-
tion. Most image processing packages have operators that can produce a set of properties
for each region. Common properties include geometric properties such as the area of the
region, the centroid, the extremal points; shape properties such as measures of the circu-
larity and elongation; and intensity properties such as mean gray tone and various texture
statistics. In this section we give the de�nitions of some of the most useful geometric and
shape properties and explain how they may be used in decision-making tasks. Gray-level
properties are covered in Chapter 7 on Image Texture.

In the discussion that follows, we denote the set of pixels in a region by R. The simplest
geometric properties are the region's area A and centroid (r; c): Assuming square pixels, we
de�ne these properties by
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area:

A =
X

(r;c)2R

1 (3.7)

which means that the area is just a count of the pixels in the region R.

centroid:

r = 1
A

P
(r;c)2R r (3.8)

c = 1
A

P
(r;c)2R c (3.9)

The centroid (�r; �c) is thus the \average" location of the pixels in the set R. Note that even
though each (r; c) 2 R is a pair of integers, (�r; �c) is generally not a pair of integers; often a
precision of tenths of a pixel is justi�able for the centroid.

Exercise 9 Using the area property

The gear-tooth example was designed to use only morphological and logical operations that
could be rapidly executed on a specially-designed machine. Given that we are looking for
larger-than-normal gaps between the teeth, how could the detection be performed in a way
that minimizes the morphological operations for general purpose machines on which they
do not run rapidly?

The length of the perimeter P of a region is another global property. A simple de�nition
of the perimeter of a region without holes is the set of its interior border pixels. A pixel of
a region is a border pixel if it has some neighboring pixel that is outside the region. When
8-connectivity is used to determine whether a pixel inside the region is connected to a pixel
outside the region, the resulting set of perimeter pixels is 4-connected. When 4-connectivity
is used to determine whether a pixel inside the region is connected to a pixel outside the
region, the resulting set of perimeter pixels is 8-connected. This motivates the following
de�nition for the 4-connected perimeter P4 and the 8-connected perimeter P8 of a region R:

perimeter:

P4 = f(r; c) 2 RjN8(r; c)� R 6= ;g
P8 = f(r; c) 2 RjN4(r; c)� R 6= ;g

Exercise 10 Region from perimeter

Describe an algorithm to generate a binary image of a region without holes, given only its
perimeter.

To compute length jP j of perimeter P; the pixels in P must be ordered in a sequence
P =< (ro; co); : : : ; (rK�1; cK�1) >; each pair of successive pixels in the sequence being
neighbors, including the �rst and last pixels. Then the perimeter length jP j is de�ned by
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Exercise 11 Area from perimeter

Design an algorithm to compute the area of a region without holes, given only its perimeter.
Is it possible to perform the task without regenerating the binary image?

perimeter length:

jP j = jfkj(rk+1; ck+1) 2 N4(rk; ck)gj
+

p
2jfkj(rk+1; ck+1) 2 N8(rk; ck) �N4(rk; ck)gj (3.10)

where k+1 is computed moduloK, the length of the pixel sequence. Thus two vertically or
horizontally adjacent pixels in the perimeter cause value 1 to be added to the total, while
two diagonally adjacent pixels cause about 1.4 to be added.

With the area A and perimeter P de�ned, a common measure of the circularity of the
region is the length of the perimeter squared divided by the area.

circularity(1):

C1 =
jP j2
A

(3.11)

However, for digital shapes, jP j2=A assumes its smallest value not for digital circles, as it
would for continuous planar shapes, but for digital octagons or diamonds depending on
whether the perimeter is computed as the number of its 4-neighboring border pixels or as
the length of the border, counting 1 for vertical or horizontal moves and

p
2 for diagonal

moves. To solve this problem, Haralick (1974) proposed a second circularity measure

circularity(2):

C2 =
�R

�R
(3.12)

where �R and �R are the mean and standard deviation of the distance from the centroid
of the shape to the shape boundary and can be computed according to the following formulas.

mean radial distance:

�R =
1

K

K�1X
k=0

k(rk; ck) � (�r; �c)k (3.13)

standard deviation of radial distance:

�R = (
1

K

K�1X
k=0

[k(rk; ck)� (�r; �c)k � �R]
2
)1=2 (3.14)

where the set of pixels (rk; ck); k = 0; : : : ;K � 1 lie on the perimeter P of the region. The
circularity measure C2 increases monotonically as the digital shape becomes more circular
and is similar for digital and continuous shapes.

Figure 3.18 illustrates some of these basic properties on a simple labeled image having
three regions: an ellipse, a rectangle, and a 3 � 3 square.
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labeled connected-components image

region region row of col of perim. circu- circu- radius radius

num. area center center length larity1 larity2 mean var.

1 44 6 11.5 21.2 10.2 15.4 3.33 .05

2 48 9 1.5 28 16.3 2.5 3.80 2.28

3 9 13 7 8 7.1 5.8 1.2 0.04

properties of the three regions

Figure 3.18: Basic properties of image regions.

Exercise 12 Using properties

Suppose you have a collection of two-dimensional shapes. Some of them are triangles,
some are rectangles, some are octagons, some are circles, and some are ellipses or ovals.
Devise a recognition strategy for these shapes. You may use the operations of mathematical
morphology and/or the properties de�ned so far.
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bounding box and extremal points:

It is often useful to have a rough idea of where a region is in an image. One useful concept
is its bounding box, which is a rectangle with horizontal and vertical sides that encloses the
region and touches its topmost, bottommost, leftmost, and rightmost points. As shown in
Fig. 3.19, there can be as many as eight distinct extremal pixels to a region: topmost right,
rightmost top, rightmost bottom, bottommost right, bottommost left, leftmost bottom,
leftmost top, and topmost left. Each extremal point has an extremal coordinate value in
either its row or column coordinate position. Each extremal point lies on the bounding box
of the region.

Bottommost right

Rightmost top

Rightmost bottom

Bottommost left

Leftmost bottom

Leftmost top

Topmost left Topmost right

Figure 3.19: The eight extremal points of a region and the normally oriented bounding box
that encloses the region. The dotted lines pair together opposite extremal points and form
the extremal point axes of the shape.

Extremal points occur in opposite pairs: topmost left with bottommost right; topmost
right with bottommost left; rightmost top with leftmost bottom; and rightmost bottom with
leftmost top. Each pair of opposite extremal points de�nes an axis. Useful properties of
the axis include its axis length and orientation. Because the extremal points come from a
spatial digitization or quantization, the standard Euclidean distance formula will provide
distances that are biased slightly low. (Consider, for example, the length covered by two
pixels horizontally adjacent. From the left edge of the left pixel to the right edge of the right
pixel is a length of 2 but the distance between the pixel centers is only 1.) The appropriate
calculation for distance adds a small increment to the Euclidean distance to account for
this. The increment depends on the orientation angle � of the axis and is given by

Q(�) =

(
1

j cos �j
: j�j < 45�

1
j sin �j

: j�j > 45�
(3.15)

With this increment, the length of the extremal axis from extremal point (r1; c1) to extremal
point (r2; c2) is

extremal axis length:

D =
p
(r2 � r1)2 + (c2 � c1)2 + Q(�) (3.16)
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Spatial moments are often used to describe the shape of a region. There are three second
order spatial moments of a region. They are denoted by �rr , �rc, and �cc and are de�ned
as follows:

second-order row moment:

�rr =
1

A

X
(r;c)2R

(r � �r)2 (3.17)

second-order mixed moment:

�rc =
1

A

X
(r;c)2R

(r � �r)(c� �c) (3.18)

second-order column moment:

�cc =
1

A

X
(r;c)2R

(c� �c)2 (3.19)

Thus �rr measures row variation from the row mean, �cc measures column variation from
the column mean, and �rc measures row and column variation from the centroid. These
quantities are often used as simple shape descriptors, as they are invariant to translation
and scale change of a 2D shape.

The second spatial moments have value and meaning for a region of any shape, the same
way that the covariance matrix has value and meaning for any two-dimensional probability
distribution. If the region is an ellipse, there is an algebraic meaning that can be given to
the second spatial moments.

If a region R is an ellipse whose center is the origin, then R can be expressed as

R = f(r; c) j dr2 + 2erc+ fc2 � 1g (3.20)

A relationship exists between the coe�cients d, e, and f of the equation of the ellipse and
the second moments �rr , �rc, and �cc. It is given by�

d e

e f

�
=

1

4(�rr�cc � �2rc)

�
�cc ��rc

��rc �rr

�
(3.21)

Since the coe�cients d, e, and f determine the lengths of the major and minor axes and the
orientation of the ellipse, this relationship means that the second moments �rr , �rc, and �cc
also determine the lengths of the major and minor axes and the orientation of the ellipse.
Ellipses are frequently the result of imaging circular objects. Ellipses also provide a rough
approximation to other elongated objects.

* lengths and orientations of ellipse axes:

To determine the lengths of the major and minor axes and their orientations from the
second-order moments, we must consider the following four cases.
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1. �rc = 0 and �rr > �cc
The major axis is oriented at an angle of �90� counterclockwise from the column axis

and has a length of 4�
1=2
rr . The minor axis is oriented at an angle of 0� counterclockwise

from the column axis and has a length of 4�
1=2
cc .

2. �rc = 0 and �rr � �cc
The major axis is oriented at an angle of 0� counterclockwise from the column axis and

has a length of 4�
1=2
cc . The minor axis is oriented at an angle of �90� counterclockwise

from the column axis and has a length of 4�
1=2
rr .

3. �rc 6= 0 and �rr � �cc
The major axis is oriented at an angle of

tan�1

�
�2�rc��rr � �cc +

�
(�rr � �cc)

2
+ 4�2rc

�1=2�

counterclockwise with respect to the column axis and has a length of

�
8

�
�rr + �cc +

h
(�rr � �cc)

2
+ 4�2rc

�1=2��1=2

The minor axis is oriented at an angle 90� counterclockwise from the major axis and
has a length of

�
8

�
�rr + �cc �

h
(�rr � �cc)

2
+ 4�2rc

i1=2��1=2

4. �rc 6= 0 and �rr > �cc
The major axis is oriented at an angle of

tan�1

��
�cc + �rr +

h
(�cc � �rr)

2
+ 4�2rc

i1=2��1=2

�2�rc
counterclockwise with respect to the column axis and has a length of

�
8

�
�rr + �cc +

h
(�rr � �cc)

2
+ 4�2rc

i1=2��1=2

The minor axis is oriented at an angle of 90� counterclockwise from the major axis
and has a length of

�
8

�
�rr + �cc �

h
(�rr � �cc)

2
+ 4�2rc

i1=2��1=2

* best axis:

Some image regions (objects) have a natural axis; for example, a pencil or hammer, or
the characters 'I', '/' and '-'. A best axis for an object can be computed as that axis about
which the region pixels have least second moment. Using an analogy from mechanics, this
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V

Figure 3.20: Moment about an axis is computed by summing the squared distance of each
pixel from the axis.

is an axis of least inertia { an axis about which we could spin the pixels with least energy
input. Note that for a circular disk, all axes have equal minimum (and maximum) inertia.
It is known that an axis of least inertia must pass through the centroid (�r; �c) of our set of
pixels (unit masses), and we will assume this here. First, we compute the second moment of
a point set about an arbitrary axis; then we'll �nd the axis of least second moment. A set
of moments about a selected set of axes might provide a good set of features for recognizing
objects, as we shall see in the next chapter. For example, the second moment of character
'I' about a vertical axis through its centroid is very small, whereas that of the character '/'
or '-' is not small.

Figure 3.20 shows a set of pixels and an axis making angle � with the row axis. The
angle � = � + 90 is the angle that a perpendicular to the axis makes with the row axis.
To compute the second moment of the point set about the axis, we need to sum the squares
of the distances d for all pixels: we normalize by the number of pixels to obtain a feature
that does not change signi�cantly with the number of pixels making up the shape. Note
that, since we are summing d2, the angles � and � can be changed +=� � with no change
to the second moment. Equation 3.22 gives the formula for computing the second moment:
� is the vector scalar product that is used to project the vector �V onto the unit vector in
direction �, giving length d. Any axis can be speci�ed by the three parameters �r; �c and �.
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* second moment about axis:

��r;�c;� =
1

A

X
(r;c)2R

d2

=
1

A

X
(r;c)2R

( �V � (cos �; sin �))2

=
1

A

X
(r;c)2R

((r � �r) cos � + (c � �c) sin �)
2

(3.22)

where � = �+ �=2.

Exercise 13 Program to compute point set features

Write a program module, or C++ class, that manages a bag of 2D points and provides the
following functionality. A bag is di�erent from a set in that duplicate points are allowed.

� construct an initially empty bag of 2D points (r,c)

� add point (r,c) to the bag

� compute the centroid of the current bag of points

� compute the row and column moments of the current bag of points

� compute the bounding box

� compute the best and worst axes and the second moments about them

Exercise 14 Program to compute features from images

After creating the feature extraction module of the previous exercise, enhance it to compute
the second moments about horizontal, vertical and diagonal axes through the centroid of
points. Thus, �ve di�erent second moments will be available for any bag of points. Create
a set of 20x20 binary images of digits from '0' to '9' for test data, or access some existing
data. Write a program that scans an image of a digit and computes the �ve moments. Study
whether or not the �ve moments have potential for recognizing the input digit.

The above formula can be used to compute several moments to capture some informa-
tion about the shape of the point set; for example, moments about the vertical, horizontal,
and diagonal axes are useful for classifying alphabetic characters in standard orientation.
The least (and most) inertia is an invariant property of the point set and translates and
rotates with the point set. The axis of least inertia can be obtained by minimizing ��r;�c;�.
Assuming now that the best axis must pass through the centroid, we need only di�erentiate
the formula with respect to � to determine the best �̂.
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* axis with least second moment:

tan 2�̂ =
2
P

(r � �r)(c� �c)P
(r � �r)(r � �r) �P (c� �c)(c� �c)

=
1
A
2
P

(r � �r)(c� �c)
1
A

P
(r � �r)(r � �r)� 1

A

P
(c � �c)(c � �c)

=
2 �rc

�rr � �cc
(3.23)

There are two extreme values for �, a minimum and a maximum, which are 90 degrees
apart. We have already seen the method to distinguish the two in the above discussion
about the major and minor axes of an ellipse. In fact, the above formula allows us to
compute an ellipse that approximates the point set in the sense of these moments. Note
that highly symmetrical objects, such as squares and circles, will cause a zero-divide in the
above formula; hence the case analysis used with the elliptical data must also be done here.

Exercise 15 Compute the extremes of inertia

Di�erentiate the formula in Equation 3.22 and show how the best (and worst) axes are
obtained in Equation 3.23.

Exercise 16 Verify that the best axis passes through the centroid

Verify that the axis of least inertia must pass though the centroid. Consult the references
at the chapter's end or other references on statistical regression or mechanics; or, prove it
yourself.

3.7 Region Adjacency Graphs

In addition to properties of single regions, relationships among groups of regions are also
useful in image analysis. One of the simplest, but most useful relationships is region ad-

jacency. Two regions are adjacent if a pixel of one region is a neighbor of a pixel of the
second region. In binary images, there are only two kinds of regions: foreground regions
and background regions. All of the foreground regions are adjacent to the background and
not to one another. If the background is one single, connected region, then there is nothing
further to compute. Suppose instead that the foreground regions can have holes in them,
each hole belonging to the background. Applying the connected components labeling oper-
ation to the foreground pixels yields a labeled image in which the foreground regions each
have a numeric label and the background regions all have label zero. But it is also possi-
ble to apply the connected components operator to the background. In this case, all the
background regions can be assigned labels, too. One of these regions will be large and will
start at the top left of the image. This one can be given a special label, such as 0. The
rest of the background regions are the holes in the foreground regions. Given the image
of foreground labels and the image of background labels, it is useful to determine which
background regions are adjacent to each foreground region or vice versa. The structure for
keeping track of adjacencies between pairs of regions is called a region adjacency graph. It
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can be used for keeping track of adjacencies between foreground and background regions in
the binary case and for keeping track of all adjacencies in the general image segmentation
case.

8 Definition A region adjacency graph (RAG) is a graph in which each node repre-

sents a region of the image, and an edge connects two nodes if the two regions are adjacent.

Figure 3.21 gives an example of a region adjacency graph for a binary image of fore-
ground and background regions. The foreground regions have been labeled as usual with
positive integers. The background regions have been labeled with zero for the large region
that starts at the upper left pixel of the image and with negative integers for the hole regions.

0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 0 2 2 0

0 1 -1 -1 -1 1 0 2 2 0

0 1 1 1 1 1 0 2 2 0

0 0 0 0 0 0 0 2 2 0

0 3 3 3 0 2 2 2 2 0

0 3 -2 3 0 2 -3 -3 2 0

0 3 -2 3 0 2 -3 -3 2 0

0 3 3 3 0 2 2 2 2 0

0 0 0 0 0 0 0 0 0 0

a) Labeled image of foreground and background regions

0

3

2

-3

-2

1 -1

b) Region adjacency graph

Figure 3.21: A labeled image and its region adjacency graph.

The algorithm for constructing a region adjacency graph is straightforward. It processes
the image, looking at the current row and the one above it. It detects horizontal and vertical
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adjacencies, and if 8-adjacency is speci�ed, diagonal adjacencies between points with di�er-
ent labels. As new adjacencies are detected, new edges are added to the region adjacency
graph data structure being constructed. There are two issues related to the e�ciency of
this algorithm. The �rst is with respect to space. It is possible for an image to have tens of
thousands of labels. In this case, it may not be feasible, or at least not suitable in a paging
environment, to keep the entire structure in internal memory at once. The second issue re-
lates to execution time. When moving along an image, point by point, the same adjacency
(ie. the same two region labels) will be detected over and over again. It is desirable to enter
the adjacency into the data structure as infrequently as possible. These issues are addressed
in the Exercise.

Exercise 17 E�cient RAG construction
Design a data structure for keeping track of adjacencies while constructing a region adjacency
graph. Give algorithms that construct the graph from an arbitrary labeled image and that
attempt to minimize references to the data structure. Discuss how you would store the �nal
RAG in permanent storage (on disk) and how you would handle the case where the RAG
is too large to keep in internal memory during its construction.

3.8 Thresholding Gray-Scale Images

Binary images can be obtained from gray-scale images by thresholding operations. A thresh-
olding operation chooses some of the pixels as the foreground pixels that make up the objects
of interest and the rest as background pixels. Given the distribution of gray tones in a given
image, certain gray-tone values can be chosen as threshold values that separate the pixels
into groups. In the simplest case, a single threshold value t is chosen. All pixels whose
gray-tone values are greater than or equal to t become foreground pixels and all the rest
become background. This threshold operation is called threshold above. There are many
variants including threshold below, which makes the pixels with values less than or equal to
t the foreground; threshold inside, which is given a lower threshold and an upper threshold
and selects pixels whose values are between the two as foreground; and threshold outside,
which is the opposite of threshold inside. The main question associated with these simple
forms of thresholding is how to choose the thresholds.

3.8.1 The Use of Histograms for Threshold Selection

Thresholds can be selected interactively by a user of an interactive package, but for image
analysis processes that must run automatically, we would like to be able to compute the
thresholds automatically. The basis for choosing a threshold is the histogram of the gray-tone
image.

9 Definition The histogram h of gray-tone image I is de�ned by

h(m) = jf(r; c) j I(r; c) = mgj;

where m spans the gray-level values.
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a) Image of a bruised cherry b) Histogram of the cherry image

Figure 3.22: Histogram of the image of a bruised cherry displaying two modes, one repre-
senting the bruised portion and the other the nonbruised portion.

Figure 3.22 shows the image of a bruised cherry and its histogram. The histogram has two
distinct modes representing the bruised portion and nonbruised portion of the cherry.

A histogram can be computed by using an array data structure and a very simple pro-
cedure. Let H be a vector array dimensioned from 0 to MaxVal, where 0 is the value of the
smallest possible gray-level value and MaxVal is the value of the largest. Let I be the two-
dimensional image array with row values from 0 to MaxRow and column values from 0 to
MaxCol as in the previous sections. The histogram procedure is given by the following code.

Compute the histogram H of gray-tone image I.

procedure histogram(I,H);
f
\Initialize the bins of the histogram to zero."
for i := 0 to MaxVal
H[i] := 0;

\Compute values by accumulation."
for L := 0 to MaxRow
for P := 0 to MaxCol
f
grayval := I[r,c];
H[grayval] := H[grayval] + 1;
g ;

g

Algorithm 7: Image Histogram

This histogram procedure assumes that each possible gray tone of the image corresponds
to a single bin of the histogram. Sometimes we instead want to group several gray tones
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into a single bin, usually for purposes of displaying the histogram when there are many
possible gray tones. In this case the procedures can easily be modi�ed to calculate the bin
number as a function of the gray-tone. If binsize is the number of gray tones per bin, then
grayval=binsize truncated to its integer value gives the correct bin subscript.

Given the histogram, automatic procedures can be written to detect peaks and valleys
of the histogram function. The simplest case is when we are looking for a single threshold
that separates the image into dark pixels and light pixels. If the distributions of dark pixels
and bright pixels are widely separated, then the image histogram will be bimodal, one mode
corresponding to the dark pixels and one mode corresponding to the bright pixels. With
little distribution overlap, the threshold value can easily be chosen as any value in the valley
between the two dominant histogram modes as shown in Figure 3.23a. However, as the
distributions for the bright and dark pixels become more and more overlapped, the choice
of threshold value becomes more di�cult, because the valley begins to disappear as the two
distributions begin to merge together as shown in Figure 3.23b.

a) Two distinct modes b) Overlapped modes

Figure 3.23: Two image histograms. The histogram on the left has two easily-separable
modes; the one on the right has overlapped modes that make it more di�cult to �nd a
suitable threshold.

3.8.2 * Automatic Thresholding: the Otsu Method

Several di�erent methods have been proposed for automatic threshold determination. We
discuss here the Otsu method, which selects the threshold based on the minimization of
the within-group variance of the two groups of pixels separated by the thresholding oper-
ator. For this discussion, we will specify the histogram function as a probability function
P where P (0); :::; P (I) represent the histogram probabilities of the observed gray values
0; :::; I;P (i) = jf(r; c) j Image(r; c) = igj=jR�Cj; where R�C is the spatial domain of the
image. If the histogram is bimodal, the histogram thresholding problem is to determine a
best threshold t separating the two modes of the histogram from each other. Each threshold
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t determines a variance for the group of values that are less than or equal to t and a variance
for the group of values greater than t. The de�nition for best threshold suggested by Otsu
is that threshold for which the weighted sum of within-group variances is minimized. The
weights are the probabilities of the respective groups.

We motivate the within-group variance criterion by considering the situation that some-
times happens at a ski school. A preliminary test of capabilities is given and the histogram
of the resulting scores is bimodal. There are advanced skiers and novices. Lessons that
are aimed at the advanced skiers go too fast for the others, and lessons that are aimed at
the level of the novices are boring to the advanced skiers. To �x this situation, the teacher
decides to divide the class into two mutually exclusive and homogeneous groups based on
the test score. The question is to determine which test score to use as the dividing criterion.
Ideally, each group should have test scores that have a unimodal bell-shaped histogram, one
around a lower mean and one around a higher mean. This would indicate that each group
is homogeneous within itself and di�erent from the other.

A measure of group homogeneity is variance. A group with high homogeneity will have
low variance. A group with low homogeneity will have high variance. One possible way to
choose the dividing criterion is to choose a dividing score such that the resulting weighted
sum of the within-group variances is minimized. This criterion emphasizes high group ho-
mogeneity. A second way to choose the dividing criterion is to choose a dividing score that
maximizes the resulting squared di�erence between the group means. This di�erence is re-
lated to the between-group variance. Both dividing criteria lead to the same dividing score
because the sum of the within-group variances and the between-group variances is a constant.

Let �2W be the weighted sum of group variances, that is, the within-group variance. Let
�21(t) be the variance for the group with values less than or equal to t and �22(t) be the
variance for the group with values greater than t. Let q1(t) be the probability for the group
with values less than or equal to t and q2(t) be the probability for the group with values
greater than t. Let �1(t) be the mean for the �rst group and �2(t) the mean for the second
group. Then the within-group variance �2W is de�ned by

�2W (t) = q1(t) �
2
1(t) + q2(t) �

2
2(t) (3.24)

where

q1(t) =

tX
i=1

P (i)

q2(t) =

IX
i=t+1

P (i) (3.25)

�1(t) =

tX
i=1

i P (i)=q1(t)

�2(t) =

IX
i=t+1

i P (i)=q2(t) (3.26)

�21(t) =

tX
i=1

[i� �1(t)]
2
P (i)=q1(t)
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�22(t) =

IX
i=t+1

[i� �2(t)]
2
P (i)=q2(t) (3.27)

The best threshold t can then be determined by a simple sequential search through all
possible values of t to locate the threshold t that minimizes �2W (t). In many situations this
can be reduced to a search between the two modes. However, identi�cation of the modes is
really equivalent to the identi�cation of separating values between the modes.

There is a relationship between the within-group variance �2W (t) and the total variance
�2 that does not depend on the threshold. The total variance is de�ned by

�2 =

IX
i=1

(i� �)2P (i)

where

� =

IX
i=1

i P (i)

The relationship between the total variance and the within-group variance can make the
calculation of the best threshold less computationally complex. By rewriting �2, we have

�2 =

tX
i=1

[i � �1(t) + �1(t)� �]
2
P (i) +

IX
i=t+1
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2
P (i)

=
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�
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+

IX
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�
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But

tX
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IX
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Since

q1(t) =
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2
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2
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+
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i=t+1
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2
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(3.28)

The �rst bracketed term is the within-group variance �2W . It is just the sum of the weighted
variances of each of the two groups. The second bracketed term is called the between-group
variance �2B. It is just the sum of the weighted squared distances between the means of each
group and the grand mean. The between-group variance can be further simpli�ed. Note
that the grand mean � can be written as

� = q1(t) �1(t) + q2(t) �2(t) (3.29)

Using Eq. (3.29) to eliminate � in Eq. (3.28), substituting 1�q1(t) for q2(t); and simplifying,
we obtain

�2 = �2W (t) + q1(t)[1� q1(t)] [�1(t)� �2(t)]
2

Since the total variance �2 does not depend on t, the t minimizing �2W (t) will be the t

maximizing the between group variance �2B(t),

�2B(t) = q1(t) [1� q1(t)] [�1(t) � �2(t)]
2

(3.30)

To determine the maximizing t for �2B(t); the quantities determined by Eqs. (3.25) to (3.27)
all have to be determined. However, this need not be done independently for each t. There
is a relationship between the value computed for t and that computed for the next t : t+ 1.
We have directly from Eq. (3.25) the recursive relationship

q1(t + 1) = q1(t) + P (t+ 1) (3.31)

with initial value q1(1) = P (1).

From Eq. (3.26) we obtain the recursive relation

�1(t+ 1) =
q1(t) �1(t) + (t+ 1)P (t+ 1)

q1(t+ 1)
(3.32)

with the initial value �1(0) = 0: Finally, from Eq. (3.29) we have

�2(t+ 1) =
�� q1(t+ 1) �1(t+ 1)

1� q1(t+ 1)
(3.33)

Automatic threshold-�nding algorithms only work well when the images to be thresh-
olded satisfy their assumptions about the distribution of the gray-tone values over the image.
The Otsu automatic threshold �nder assumes a bimodal distribution of gray-tone values. If
the image approximately �ts this constraint, it will do a good job. If the image is not at
all bimodal, the results are not likely to be useful. Figure 3.24 illustrates the application
of the Otsu operator to the gray-tone image of some toy blocks shown in a). The operator
returned a threshold of 93 from the possible range of 0 to 255. The pixels below and above
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a) original image b) pixels below 93 c) pixels above 93

Figure 3.24: A gray-tone image and the pixels below and above the threshold of 93 (shown
in white) found by the Otsu automatic thresholding operator.

the threshold are shown in b) and c), respectively. Only the very dark regions of the image
have been isolated.

If the gray-tone values of an image are strongly dependent on the location within the
image, for example lighter in the upper left corner and darker in the lower right, then it
may be more appropriate to use local instead of global thresholds. This idea is sometimes
called dynamic thresholding. In some applications, the approximate shapes and sizes of the
objects to be found are known in advance. In this case a technique called knowledge-based

thresholding, which evaluates the resultant regions and chooses the threshold that provides
the best results, can be employed. Finally, some images are just not thresholdable, and
alternate techniques must be used to �nd the objects in them.

Exercise 18 Automatic threshold determination
Write a program to implement the Otsu automatic threshold �nder. Try the program on
several di�erent types of scanned images.

3.9 References

There are a number of di�erent algorithms for the connected components labeling operation,
each designed to address a certain task. Tanimoto (1990) assumes that the entire image can
�t in memory and employs a simple, recursive algorithm that works on one component at
a time, but can move all over the image. Other algorithms were designed for larger images
that may not �t in memory and work on only two rows of the image at a time. Rosenfeld
and Pfalz (1966) developed the two-pass algorithm that uses a global equivalence table and
is sometimes called the `classical' connected components algorithm. Lumia, Shapiro, and
Zuniga (1983) developed another two-pass algorithm that uses a local equivalence table to
avoid paging problems. Danielsson and Tanimoto (1983) designed an algorithm for mas-
sively parallel machines that uses a parallel propagation strategy. Any algorithms that keep
track of equivalences can use the union-�nd data structure (Tarjan, 1975) to e�ciently per-
form set-union operations.

Serra (1982) produced the �rst systematic theoretical treatment of mathematical mor-
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phology. Sternberg (1985) designed a parallel pipeline architecture for rapidly performing
the operations and applied it to problems in medical imaging and industrial machine vision.
He also extended the binary morphology operations to gray-scale morphology (1986), which
has become a standard image �ltering operation. Haralick, Sternberg, and Zhuang (1987)
published a tutorial paper on both binary and gray-scale morphology that has helped to
show their value to the computer vision community. Shapiro, MacDonald, and Sternberg
(1987) showed that morphological feature detection can be used for object recognition.

Automatic thresholding has been addressed in a number of papers. The method de-
scribed in this text is due to Otsu (1979). Other methods have been proposed by Kittler
and Illingworth (1986) and by Cho, Haralick, and Yi (1989). Sahoo et al. (1988) give a
general survey of thresholding techniques.
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