
Chapter 14

3D Models and Matching

Models of 3D objects are used heavily both in computer vision and in computer graph-
ics. In graphics, the object must be represented in a structure suitable for rendering and
display. The most common such structure is the 3D mesh, a collection of polygons consist-
ing of 3D points and the edges that join them. Graphics hardware usually supports this
representation. For smoother and/or simpler surfaces, other graphics representations in-
clude quadric surfaces, B-spline surfaces, and subdivision surfaces. In addition to 3D shape
information, graphics representations can contain color/texture information which is then
\texture-mapped" onto the rendered object by the graphics hardware. Figure 14.1 shows a
rough 3D mesh of a toy dog and a texture-mapped rendered image from the same viewpoint.

In computer vision, the object representation must be suitable for use in object recog-
nition, which means that there must be some potential correspondence between the repre-
sentation and the features that can be extracted from an image. However, there are several
di�erent types of images commonly used in 3D object recognition, in particular: gray-scale
images, color images, and range images. Furthermore, it is now common to have either
gray-scale or color images registered to range data, providing recognition algorithms with
a richer set of features. Most 3D object algorithms are not general enough to handle such
a variety of features, but instead were designed for a particular representation. Thus it

Figure 14.1: 3D mesh of a toy dog and texture-mapped rendered image.
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is important to look at the common representations before discussing 3D object recogni-
tion. In general categories, there are geometric representations in terms of points, lines, and
surfaces; symbolic representations in terms of primitive components and their spatial rela-
tionships; and functional representations in terms of functional parts and their functional
relationships. We will begin with a survey of the most common methods for representing
3D objects and then proceed to the representations required by the most common types of
object recognition algorithms.

14.1 Survey of Common Representation Methods

Computer vision began with the work of Roberts in 1965 on recognition of polyhedral
objects, using simple wire-frame models and matching to straight line segments extracted
from images. Line-segment-based models have remained popular even today, but there are
also a number of alternatives that attempt to more closely represent the data from objects
that can have curved and even free-form surfaces. In this section, we will look at mesh
models, surface-edge-vertex models, voxel and octree models, generalized-cylinder models,
superquadric models, and deformable models. We will also look at the distinction between
true 3D models and characteristic-view models that represent a 3D object by a set of 2D
views.

14.1.1 3D Mesh Models

A 3D mesh is a very simple geometric representation that describes an object by a set of
vertices and edges that together form polygons in 3D-space. An arbitrary mesh may have
arbitrary polygons. A regular mesh is composed of polygons all of one type. One commonly
used mesh is a triangular mesh, which is composed entirely of triangles; the mesh shown in
Figure 14.1 is a triangular mesh. Meshes can represent an object at various di�erent levels
of resolution, from a coarse estimate of the object to a very �ne level of detail. Figure 14.2
shows three di�erent meshes representing di�erent levels of resolution of the dog. They can
be used both for graphics rendering or for object recognition via range data. When used for
recognition, feature extraction operators must be de�ned to extract features from the range

data that can be used in matching. Such features will be discussed later in this chapter.

14.1.2 Surface-Edge-Vertex Models

Since many of the early 3D vision systems worked with polygonal objects, edges have been
the main local feature used for recognition or pose estimation. A three{dimensional object
model that consists of only the edges and vertices of the object is called a wire-framemodel.
The wire-frame representation assumes that the surfaces of the object are planar and that
the object has only straight edges.

A useful generalization of the wire-frame model that has been heavily used in computer
vision is the surface{edge{vertex representation. The representation is a data structure
containing the vertices of the object, the surfaces of the object, the edge segments of the
object, and, usually, the topological relationships that specify the surfaces on either side of
an edge and the vertices on either end of an edge segment. When the object is polygonal,
the surfaces are planar and the edge segments are straight line segments. However, the
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Figure 14.2: Three meshes of the dog at di�erent resolutions.

model generalizes to include curved edge segments and/or curved surfaces.

Figure 14.3 illustrates a sample surface-edge-vertex data structure used for representing
a database of object models in a 3D object recognition system. The data structure is hier-
archical, beginning with the world at the top level and continuing down to the surfaces and
arcs at the lowest level. In Figure 14.3 the boxes with �elds labeled [name, type, <entity>,
transf] indicate the elements of a set of class <entity>. Each element of the set has a name,
a type, a pointer to an <entity>, and a 3D transformation that is applied to the <entity>
to obtain a potentially rotated and translated instance. For example, the world has a set
called objects. In that set are named instances of various 3D object models. Any given ob-
ject model is de�ned in its own coordinate system. The transformation allows each instance
to be independently positioned in the world.

The object models each have three sets: their edges, their vertices, and their faces. A
vertex has an associated 3D point and a set of edges that meet at that point. An edge has a
start point, an end point, a face to its left, a face to its right, and an arc that de�nes its form,
if it is not a straight line. A face has a surface that de�nes its shape and a set of bound-
aries including its outer boundaries and hole boundaries. A boundary has an associated
face and a set of edges. The lowest level entities{arcs, surfaces, and points{are not de�ned
here. Representations for surfaces and arcs will depend on the application and on the accu-
racy and smoothness required. They might be represented by equations or further broken
down into surface patches and arc segments. Points are merely vectors of (x,y,z) coordinates.

Figure 14.4 shows a simple 3D object that can be represented in this manner. To
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simplify the illustration, only a few visible surfaces and edges are discussed. The visible
surfaces are F1, F2, F3, F4, and F5. F1, F3, F4, and F5 are planar surfaces, while F2 is
a cylindrical surface. F1 is bounded by a single boundary composed of a single edge that
can be represented by a circular arc. F2 is bounded by two such boundaries. F3 is bounded
by an outer boundary composed of four straight edges and a hole boundary composed of
a single circular arc. F4, and F5 are each bounded by a single boundary composed of four
straight edges. Edge E1 separates faces F3 and F5. If we take vertex V1 to be its start
point and V2 to be its end point, then F3 is its left face and F5 is its right face. Vertex V2
has three associated edges E1, E2, and E3.

Exercise 1 Surface-edge-vertex structure

Using the representation of Figure 14.3, create a model of the entire object shown in Figure
14.4, naming each face, edge, and vertex in the full 3D object, and using these names in the
structure.

14.1.3 Generalized-Cylinder Models

A generalized cylinder is a volumetric primitive de�ned by a space curve axis and a cross
section function at each point of the axis. The cross section is swept along the axis creating a
solid of revolution. For example, a common circular cylinder is a generalized cylinder whose
axis is a straight line segment and whole cross section is a circle of constant radius. A cone
is a generalized cylinder whose axis is a straight line segment and whose cross section is a
circle whose radius starts out zero at one end point of the axis and grows to its maximumat
the other end point. A rectangular solid is a generalized cylinder whose axis is a straight line
segment and whose cross section is a constant rectangle. A torus is a generalized cylinder
whose axis is a circle and whose cross section is a constant circle.

A generalized cylinder model of an object includes descriptions of the generalized cylin-
ders and the spatial relationships among them, plus global properties of the object. The
cylinders can be described by length of axis, average cross{section width, ratio of the two,
and cone angle. Connectivity is the most common spatial relationship. In addition to end-
point connectivity, cylinders may be connected so that the end points of one connect to
an interior point of another. In this case, the parameters of the connection, such as the
position at which the cylinders touch, the inclination angle, and the girdle angle describing
the rotation of one about the other may be used to describe the connection. Global proper-
ties of an object may include number of pieces (cylinders), number of elongated pieces, and
symmetry of the connections. Hierarchical generalized cylinder models, in which di�erent
levels of detail are given at di�erent levels of the hierarchy, are also possible. For example, a
person might be modeled very roughly as a stick �gure (as shown in Figure 14.5) consisting
of cylinders for the head, torso, arms, and legs. At the next level of the hierarchy, the torso
might be divided into a neck and lower torso, the arms into three cylinders for upper arm,
lower arm, and hand, and the legs similarly. At the next level, the hands might be broken
into a main piece and �ve �ngers, and one level deeper, the �ngers might be broken into
three pieces and the thumb into two.

A three{dimensional generalized cylinder can project to two di�erent kinds of two{
dimensional regions on an image: ribbons and ellipses. A ribbon is the projection of the
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Figure 14.5: Rough generalized cylinder model of a person. The dotted lines represent the
axes of the cylinders.

Figure 14.6: The process of constructing a generalized cylinder approximation from a 2D
shape. (Example courtesy of Gerard Medioni.)

long portion of the cylinder, while an ellipse is the projection of the cross section. Of course,
the cross section is not always circular, so its projection is not always elliptical, and some

generalized cylinders are completely symmetric, so they have no longer or shorter parts. For
those that do, algorithms have been developed to �nd the ribbons in images of the modelled
objects. These algorithms generally look for long regions that can support the notion of an
axis. Figure 14.6 shows the process of determining potential axes of generalized cylinders
from a 2D shape.

Figure 14.7 shows steps in creating a detailed model of a particular human body for
the purpose of making well-�tting clothing. A special sensing environment combines input
from twelve cameras. Six cameras view the human at equal intervals of a 2m cylindrical
room: there is a low set and high set so that a 2m tall person can be viewed. As shown in
Figure 14.7, silhouettes from six cameras are used to �t elliptical cross sections to obtain a
cylindrical model. A light grid is also used so that triangulation can be used to compute
3D surface points in addition to points on the silhouettes. Concavities are developed using
the structured light data, and ultimately a detailed mesh of triangles is computed.
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Figure 14.7: Steps in making a model of a human body for �tting clothing. (Top) Three
cross section curves along with cross section silhouettes from six cameras viewing the body
(the straight lines project the silhouette toward the cameras). Structured light features allow
3D points to be computed in concavities. (Bottom) Generalized cylinder model created by
�tting elliptical cross sections to the six silhouettes, resulting triangular mesh, and shaded
image. (Courtesy of Helen Shen and colleagues at the Dept. of Computer Science, Hong
Kong University of Science and Technology: project supported by grant AF/183/97 from
the Industry and Technology Development Council of Hong Kong, SAR of China in 1997.)
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Exercise 2 Generalized cylinder models

Construct a generalized cylinder model of an airplane. The airplane should have a fuselage,
wings, and a tail. The wings should each have an attached motor. Try to describe the
connectivity relationships between pairs of generalized cylinders.
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Figure 14.8: A simple three{dimensional object and its octree encoding.

14.1.4 Octrees

An octree is a hierarchical 8{ary tree structure. Each node in the tree corresponds to a cubic
region of the universe. The label of a node is either full, if the cube is completely enclosed
by the three{dimensional object, empty if the cube contains no part of the object, or partial,
if the cube partly intersects the object. A node with label full or empty has no children. A
node with label partial has eight children representing the partition of the cube into octants.

A three{dimensional object can be represented by a 2n�2n�2n three{dimensional array
for some integer n. The elements of the array are called voxels and have a value of 1 (full)
or 0 (empty), indicating the presence or absence of the object. The octree encoding of the
object is equivalent to the three{dimensional array representation, but will generally require
much less space. Figure 14.8 gives a simple example of an object and its octree encoding,
using the octant numbering scheme of Jackins and Tanimoto.

Exercise 3 Octrees
Figure 14.11 shows two views of a simple chair. Construct an octree model of the chair.
Assume that the seat and back are both 4 voxels by 4 voxels by 1 voxel and that each of
the legs is 3 voxels by 1 voxel by 1 voxel.
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14.1.5 Superquadrics

Superquadrics are models originally developed for computer graphics and proposed for use
in computer vision by Pentland. Superquadrics can intuitively be thought of as lumps of clay
that can be deformed and glued together into object models. Mathematically superquadrics
form a parameterized family of shapes. A superquadric surface is de�ned by a vector S whose
x; y; and z components are speci�ed as functions of the angles � and ! via the equation

S(�; !) =

2
4xy
z

3
5 =

2
4 a1 cos

�1(�) cos�2(!)
a2 cos

�1(�) sin�2(!)
a3 sin

�1(�)

3
5 (14.1)

for ��
2
� � � �

2
and �� � ! < �: The parameters a1; a2; and a3 specify the size of the

superquadric in the x; y and z directions, respectively. The parameters �1 and �2 represent
the squareness in the latitude and longitude planes.

Superquadrics can model a set of useful building blocks such as spheres, ellipsoids, cylin-
ders, parallelepipeds, and in-between shapes. When �1 and �2 are both 1, the generated
surface is an ellipsoid, and if a1 = a2 = a3, a sphere. When �1 << 1 and �2 = 1, the surface
looks like a cylinder.

The power of the superquadric representation lies not in its ability to model perfect geo-
metric shapes, but in its ability to model deformed geometric shapes through deformations
such as tapering and bending. Linear tapering along the z{axis is given by the transformation

x0 =
�
kx
a3
z + 1

�
x

y0 =
�
ky
a3
z + 1

�
y

z0 = z

where kx and ky (�1 � kx; ky � 1) are the tapering parameters with respect to the x and y
planes, respectively, relative to the z direction. The bending deformation is de�ned by the

transformation

x0 = x+ cos(�)(R� r);

y0 = y + sin(�)(R� r);

z0 = sin()( 1
k
� r)

where k is the curvature, r is the projection of the x and y components onto the bending
plane z � r given by

r = cos
�
�� tan�1

�y
x

��p
x2 + y2;

R is the transformation of r given by

R = k�1 � cos()
�
k�1 � r

�
;

and  is the bending angle
 = zk�1:
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Figure 14.9: Fitted left-ventricle models at �ve time points during systole, using extended
superquadrics with parameter functions (courtesy of Jinah Park and Dmitris Metaxas).

Superquadric models are mainly for use with range data and several procedures for recov-
ering the parameters of a superquadric �t to a surface have been proposed. Figure 14.9
illustrates superquadric �ts to 3D data from the left ventricle of a heart at �ve time points.
These are extended superquadrics with parameter functions, where the parameters are not
constants but functions.

14.2 True 3D Models versus View-Class Models

All of the above object representations emphasize the three{dimensional nature of the ob-
jects, but ignore the problem of recognizing an object from a two{dimensional image taken
from an arbitrary viewpoint. Most objects look di�erent when viewed from di�erent view-
points. A cylinder that projects to a ribbon (see above) in one set of viewpoints also projects
to an ellipse in another set of viewpoints. In general, we can partition the space of viewpoints
into a �nite set of view classes 1, each view class representing a set of viewpoints that share
some property. The property may be that the same surfaces of the object are visible in an
image taken from that set of viewpoints, the same line segments are visible, or the relational
distance (see Chapter 11) between relational structures extracted from line drawings at each
of the viewpoints is small enough. Figure 14.10 shows the view classes of a cube de�ned
by grouping together those viewpoints which produce line drawings that are topologically

isomorphic. Figure 14.11 shows two views of a chair in which most, but not all, of the same
surfaces are visible. These views could be grouped together via a clustering algorithm using
their relational distance de�ned over region primitives and the region adjacency relation as a
basis for closeness. They are among many di�erent similar views that together form a view
class; the number of views is potentially in�nite. The main point is that once the correct
view class has been determined for an object, the matching to determine the correspondences
necessary for pose determination is a highly{constrained, two{dimensional kind of matching.

The use of view classes was proposed by Koenderink and van Doorn (1979). The struc-
ture they proposed is called an aspect graph. An aspect is de�ned as a qualitatively distinct
view of an object as seen from a set of connected viewpoints. The nodes of an aspect graph
represent aspects and the arcs connect adjacent aspects. The change in appearance at the
boundary between two aspects is called a visual event. Algorithms for automatic construc-
tion of aspect graphs were developed in the late 1980s, but because the structures are very

1
Also called characteristic views.
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Class 2Class 1 Class 3

Figure 14.10: The three view classes of a cube de�ned by grouping together viewpoints that
produce topologically isomorphic line drawings.

Figure 14.11: Two chair views that belong to the same view class based on their low
relational distance.
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Figure 14.12: (Left) 2D \balloon" or active contour being blown up to �t the 2D points.
(Right) 2D \rubber band" stretched over the outside of the 2D points.

large for realistic objects, they have not been used much in object recognition. The view
class or characteristic view concept has been heavily used instead.

Exercise 4 View-class models
The two chairs of Figure 14.11 both belong to a single view class of a three-dimensional
object. Draw pictures of three more common view-classes of the chair.

14.3 Physics-based and Deformable Models

Physics-based models can be used to model the appearance and behavior of an actual phys-
ical object being imaged. An example is given below where the object is the human heart.
Often, the principles of physics are not used to model an actual physical system, but instead
are used in analogy to simulate some image analysis task. An example is given below, where
a mesh of triangles is blown up as a balloon to �t 3D data points taken from a telephone hand-

set. In the modeling of the heart, the objective is to model the changing shape and behavior
of an object over time so that its functioning can be understood. In the modeling of the
telephone handset, the objective is to obtain a good mesh model of the static measurements.

A term that is strongly related to the term physics-based model is deformable model. The
latter term emphasizes that the change in object shape is to be modeled.

There has been good progress recently in physics-based and deformable modeling. The-
ory and applications are rich and more complex than the other areas covered in this text.
The brief coverage given here is only for the purpose of introducing the topic and motivating
the student to do outside reading in the rapidly developing literature.

14.3.1 Snakes: Active Contour Models

Most of us have placed a rubber band around our outstretched �ngers. Our �ngers are anal-
ogous to �ve points in 2D and the rubber band is a closed contour \through" the �ve points.
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Figure 14.13: (Left) Forces on a point of a stretched rubber band tend to move that point
inward. (Right) An inationary force on a point of a balloon tends to move it outward,
provided the elastic forces from neighboring points are exceeded.

The action of the rubber band can be simulated by an active contour which moves in an
image toward a minimumenergy state. A rubber band tends to contract to reduce its stored
energy, at least until it has met with supporting forces (the �ngers). Figure 14.12(right)
illustrates this concept. The small dark regions are analogous to our �ngers: the contraction
of the rubber band is stopped by these regions. Another aspect of the analogy is that the
rubber band will not have in�nite curvature; even if stopped by a single point (or wire) the
rubber band will smoothly wrap around that point. Preventing or punishing high curvature
can be done during simulation. Figure 14.12(left) shows what would happen if a balloon
were blown up inside our hand with �ngers posed as if grasping a ball. Analogously, we
could simulate a virtual balloon being blown up inside some image regions or points.

Figure 14.12 illustrates a critical advantage of active contours: the contour is a complete
structure even though the data being �t may be badly fragmented. Moreover, other charac-
teristics can be enforced top-down, such as smoothness, perimeter limits, and the property
of being a simple curve. We now give a brief sketch of how the behavior of an active contour
can be simulated by a computer algorithm.

To simulate the behavior of an active contour object, we �rst need a memory state to
de�ne the structure and location of the contour. Consider the simple case where we have
a �xed set of N points at time t, each located at Pj;t and each circularly related to two
neighbors Pj�1;t and Pj+1;t. In the case of a virtual rubber band, each point will be subject
to a pulling force from the two neighbors, the result of which will accelerate the point Pj;t to
a new position Pj;t+1. Figure 14.13(left) illustrates this. We usually consider each point to
have unit mass so we can easily compute acceleration in terms of force. Using acceleration
we compute velocity, and using velocity we compute position. Thus, our memory state at
time t should also contain the acceleration and velocity of each point: moreover, these need
not be zero at the start of the simulation. One more data member is needed: we use a
Boolean variable to indicate whether or not the point has stopped moving due to running
into some data point (called a hard constraint). In addition to our active contour object, of
course, we need to store the data to be modeled: this could be a greyscale image, a set of
2D edge points, a set of 3D surface points, etc. represented in some manner as described in
this chapter or in Chapters 2 or 10.
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A simple algorithm for moving active contour points is sketched below. Contour points
move until they meet hard constraints or until the resultant force on them is zero. Or,
perhaps the algorithm never stops, as in the case where the active contour is tracking a pair
of speaking lips! Note that an initial position for the contour is required.

Move contour (snake) points Pj;t to next position Pj;t+1

Input: N data points at time t; each Pj;t has velocity Vj;t and acceleration Aj;t.

Output: N data points at time t+1; each Pj;t+1 has velocity Vj;t+1 and acceleration Aj;t+1.

Using time step �t, do at each point Pj;t that has not stopped at a hard constraint:

1. Compute the resultant force on Pj;t using its neighbors.

2. Using the force, compute the acceleration vector Aj;t+1.

3. Compute velocity Vj;t+1 = Vj;t + Aj;t�t

4. Compute new position Pj;t+1 = Pj;t + Vj;t�t

5. If Pj;t+1 is within tolerance of some data point, freeze this position.

Algorithm 1: Single update stage for an active contour.

Algorithm 1 sketches a simple stage of an Euler algorithm that computes, for a small
time step, acceleration from force, velocity from acceleration and position from velocity.
A point's position is frozen when it collides with a data point, edge, or surface patch. In
general, this can be a costly computation that requires search through the data structure
or image to �nd such a point.

Hooke's Law models a spring, which is a common element of physics-based models.
Suppose a spring of natural length L connects points Pj and Pk. The force F acting on Pj
is proportional to how the spring is stretched (or compressed) relative to its natural length.

F = �kL(kPj � Pkk � L)
Pj � Pk

kPj � Pkk
(14.2)

This should su�ce to simulate our rubber band. A damping force should be added if it
is possible that the spring system could oscillate inde�nitely. A remaining problem is to
determine a good length L. If we are modeling a known object, such as talking lips, we
should be able to determine practical values for N , L and kL. kL is a \sti�ness" parameter
that relates force to deformation.

* An energy minimizing formulation

Although the notion of an active contour had been used previously by others, a 1987 paper
by Kass, Witkin and Terzopoulos seemed to ignite the interest of the computer vision com-
munity. Much of the discussion above was motivated by their view of \snakes", as they were
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called. Fitting a snake to data was de�ned as an optimization problem that sought a mini-
mumenergy boundary subject to some hard constraints. As useful formulation is to consider
that total energy is a sum of three components; (1) internal contour energy characterized
by the stretching and bending of the contour itself, (2) image energy that characterizes how
the contour �ts to the image intensity or gradient, and (3) external energy due to constraint
forces. Constraints are used to apply information from an interactive user or a higher level
CV process.

A contour parameterized by s 2 [0; 1] is v(s) = [x(s); y(s)], which is just a function of
real variable s. The problem is to �nd the function that minimizes the energy de�ned as
follows.

Econtour =

Z 1

0

(Einternal +Eimage + Econstraints) ds: (14.3)

Einternal = �(s)jv0(s)j2 + �(s)jv00(s)j2 (14.4)

The snake can be controlled to pass near some designated points by adding in the squared
distance between each point and the snake using Econstraints. Eimage might just be the sum
of the squared distances between a snake point and the closest edge point. The internal
energy de�nition is perhaps more interesting. The �rst part of Einternal punishes higher
variance in the lengths of small contour segments | lower energy means small variance in
their lengths. The second part punishes curvature. The weighting functions �(s) and �(s)
are used for blending and can also allow the process to form a sharp corner where a corner
detector has found one or to take a long leap over bland texture.

The �tting of active contours to images can be related to the making of airfoils or canoes.
Figure 14.14 shows what happens when a strip of wood is nailed at regular intervals to cross
sections held in place by a \strongback". The wood bends to smoothly �t the (air) space in
between the cross sections making a smooth but possibly complex curve. Contact with the
cross sections enforces a hard constraint. High curvature is reduced as the wood distributes
the bending energy over many points. Computer algorithms can easily produce such spline
curves | in fact, Figure 14.14 was produced by such an algorithm in the x�g tool!

The approaches to minimizing the energy of a contour are beyond our scope here. Care-
ful numerical programming is needed to obtain good control of an active contour. Finite
elements packages can be used. After 1987, several new works appeared that used dynamic
programming, instead of the scale space approach proposed by Kass et al. The interested
reader can �nd many interesting works in the literature.

14.3.2 Balloon Models for 3D

A balloon model can be a mesh made by approximating a sphere. Most soccer balls are
made from 12 pentagonal and 20 hexagonal pieces, each of which can be divided into trian-
gles. Edges of the triangles can be modeled by springs so that the shape of the entire system
can deform, either by expanding or contracting. Figure 14.15 shows such a spherical model
expanding inside a cloud of 3D data points taken by sensing a telephone handset. The algo-
rithm freezes the position of a vertex when it makes contact with sensed data. An inating
force is applied to each vertex in the direction of the surface normal interpolated at that
vertex. To detect contact with sensed data, the data are searched only in a direction along



16 Computer Vision: Mar 2000

strongback

cross sections

wood strip
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Figure 14.14: A wood strip attached to cross sections makes a \low energy" contour.
(Smooth spline courtesy of x�g.)

this normal. When an inating triangle becomes large, the algorithm subdivides it into four
triangles. In this manner, the sphere can inate to the elongated shape of the data as shown
in Figure 14.15(b),(c). The 3D data points were obtained from several di�erent views of
the object surface using a range scanner, each rigidly transformed to a global coordinate
system. Imagine the di�culty of \sewing together" the several di�erent surface meshes
that could have been obtained independently from the di�erent views. The balloon model
retains the correct topology and approximate uniformity of triangles as it deforms to �t the
data. It is di�cult to start with just a set of the 3D points and build up a good surface model.

14.3.3 Modeling Motion of the Human Heart

While triangular mesh elements are commonlyused for modeling surfaces, 3D volumemodels
can be constructed using tetrahedral elements. Each tetrahedral element has four vertices,
four faces, and six edges. Sti�ness values can be assigned to the edges based on the char-
acteristics of the material being modeled. When forces are applied to various points of the
model, the structure will deform. Figure 14.16 shows two states of a beating heart computed
from tagged magnetic resonance imagery. The sensor can tag certain parts of living tissue
so that they may be sensed in motion in 3D. The heart model �t to the data is meant to
model real physics and heart function. The motion of the points of the �tted model can
be used to understand how the heart is functioning. The deformation of a tetrahedral el-
ement of the model is related to the forces on it and the sti�ness of the tissue that it models.

14.4 3D Object Recognition Paradigms

Having surveyed di�erent models for 3D objects, we now discuss the most commonly used
general paradigms for 3D object recognition. This is actually di�cult, because the method
used depends heavily on the application, the type of data, and the requirements of the
recognition task. There are many dimensions along which one can classify or constrain an
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(a) Initialization with balloon entirely within the 3D point cloud.

(b) Balloon inated so that some triangles contact data.

(c) Triangular mesh at termination.

Figure 14.15: Three snapshots of the physics-based process of inating a mesh of triangles
to �t a cloud of 3D data. (Courtesy of Yang Chen and Gerard Medioni.)
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Figure 14.16: Motion of two beating hearts as computed from tagged MRI data. The sensor
can tag living tissue and sense its motion in 3D. The heart model �t to the data is meant
to model real physics and heart function. The motion vectors shown are di�erent for the
two hearts. (Courtesy of Jinah Park and Dimitris Metaxas.)
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object recognition problem. These include

� Is the interest engineering or cognitive science? In case we want to engineer a
solution to an immediate practical problem, our problem may be speci�c enough to
be simple. For example, we may have to grab a steel cylinder from a jumble of many
of them. On the other hand, our interest may be in understanding human object
recognition. This implies development of a very general theory which is consistent
with multifarious psychological data{a much more di�cult problem.

� Does the task involve natural or manufactured objects? Manufactured objects
are usually more regular than natural ones. Moreover, there are rigid iconic prototypes
for many man-made objects, making several known matching paradigms applicable.
Natural objects are created by processes (geological, biological, etc.) which produce
a great deal of variety that may be di�cult to model. Furthermore, the context of
natural objects may be less contrained and less predictable than the context in which
manufactured objects are found. For example, the problem of object recognition for
autonomous navigation in outdoor environments seems to be much more di�cult than
the problem of recognizing and determining the pose of objects for factory automation.

� Are the object surfaces polyhedral, quadric, or free-form? Many recognition
projects have dealt only with polyhedra, which makes modeling particularly simple.
Recently, researchers have turned toward use of quadric surfaces, which it is claimed
can model about 85% of manufactured objects. The major convenience is that the
modeling and the sensed data are readily described by the same primitives, possibly
with some �tting of parameters. It is not clear how best to model sculpted, free-form
objects even when they are rigid objects. A sculpted object, such as a sports car,
turbin blade, or iceberg, may have many di�erent smoothly blending surface features
which are not easily segmented into simple primitives.

� Is there one object in the scene or are there many? Some object recognition
schemes assume that objects to be recognized are presented in isolation. This may or
may not be possible to engineer in the task domain. Multiple object environments are
typically harder because object features will be both masked and intermixed. Global
feature methods work well only for single objects. The segmentation problem can be
acute in multiple object environments.

� What is the goal of the recognition? We might need to recognize an object for
inspection, grasping, or object avoidance. For inspection, we would look at the small
details of at least part of the object {modeling and measurement precision must be
good. Grasping an object has di�erent requirements. Not only does the task require
some rough geometrical knowledge, but it must also consider balance and strength
and accessibility of the object in the workspace. A robot recognizing that an object in
its path must be avoided must only have a rough idea of the size, shape, and location
of that object.

� Is the sensed data 2D or 3D data? Humans can operate quite well with the image
from only one eye. Many researchers have designed systems that use only 2D intensity
images as input. 2D features from the object image are related to a 3D model via the
view transformation; usually the matching process has to discover this transformation
as well as the object identity. Matching is often easier if 3D data is directly available
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and this is the reason why many current researchers are working with range data. The
belief is that the surface shape of objects and their positions can be directly sensed;
this in turn provides a direct index into possible object models and also reduces the
amount of ambiguity in computing the registration transformation.

� Are object models geometric or symbolic? Geometric models describe the exact
3D shape of an object, while symbolic models describe an entire class of objects.
Geometric models are heavily used in industrial machine vision, where the objects
to be recognized come from a small prespeci�ed set. CAD data is becoming more
available and will usually have all the necessary geometric detail. Symbolic models
are required in tasks where there are many di�erent varieties of the object class to be
recognized. For example, in medical imaging, each organ provides a new object class
and every person provides a unique variation. Many objects in our environment, for
example, chairs, have many variations and require more than a geometric approach.

� Are object models to be learned or preprogrammed? Object models may
contain a large amount of precise data which is very di�cult for humans to provide.
CAD data alone may not be enough; some additional organization of that data, such
as emphasizing features, is often necessary. Having a system learn object geometry by
presenting the object to its sensors is an attractive possibility.

14.4.1 Matching Geometric Models via Alignment

Recognition by alignment employs the same principles in 3D object recognition as in 2D
matching. (See Chapter 11 for basic de�nitions.) The main idea is expressed in Algorithm 2.

Determine if a set of image data points matches a 3D object model.

1. hypothesize a correspondence between a set of model points and a set of image data
points,

2. use that correspondence to determine a transformation from the model to the data,

3. apply the transformation to the model points to produce a set of transformed model
points, and

4. compare the transformed model points to the data points to verify or disprove the
hypothesis.

Algorithm 2: The Basic Alignment Algorithm

We will look at both the 3D-3D and 2D-3D cases.

3D-3D Alignment Let us assume that the 3D models are, or can be converted to, collec-
tions of 3Dmodel-point features. If the data is range data, then corresponding 3D data-point
features are required for matching. The alignment procedure �nds the correspondences from
three chosen model-point features to three corresponding data-point features. This corre-
spondence determines a 3D transformation consisting of a 3D rotation and a 3D translation
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Figure 14.17: Correspondences between 3D model points and 3D mesh data points that can
be used to compute the transformation from the model to the data in the 3D-3D alignment
procedure.

whose application to the three model points produces the three data points. An algorithm to
do this appeared in Chapter 13. If the point correspondence is correct and there is no noise,
the correct 3D transformation can be found from the three matches. Since this is rarely the
case, more robust procedures that typically use on the order of ten correspondences have
been developed. In any case, once the potential transformation has been computed, it is
applied to all of the model points to produce a set of transformed model points that can
be directly compared to the full set of data points. As in the 2D case, a veri�cation proce-
dure decides how well the transformed model points line up with the data points and either
declares a match or tries another possible correspondence. As in the 2D case, there are
intelligent variations that select the corresponding points by the local-feature-focus method
or by some other perceptual grouping technique. Figure 14.17 illustrates the 3D-3D corre-
spondences that come about from matching a three-segment 3D junction of a chair model
to a 3D mesh dataset.

Exercise 5 3D-3D feature alignment

Junctions of line segments are common in polyhedral objects. Consider a 3D cup object hav-

ing a cylindrical part with a cylindrical cavity for the liquid and a semicircular handle. What
features of the cup might be detected in the 3D data and used for �nding correspondences
in matching?

Feature extraction is an important issue here. If the class of objects is such that dis-
tinguished points, such as corners points, peaks, and pits, can be easily found, then the
above procedure should work well. If surfaces are smooth and distinguished points are rare
or nonexistant, then a better method for �nding correspondences is needed. Johnson and
Hebert at CMU have developed a very robust method for exactly this problem. Their 3D
object representation consists of 1) a 3D mesh model of the object and 2) a set of spin
images constructed from the mesh that characterize local shape features of the object.

Given a mesh model of a 3D object, the surface normal can be estimated at each vertex
of the mesh. Then the relationship between any oriented point in 3D-space and a surface
normal at a particular vertex can be represented by two distance parameters, � and �,
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where � is its perpendicular distance to the surface normal, and � is its signed perpendic-
ular distance to the tangent plane at that vertex. Rotational angles are omitted from this
description, because they are ambiguous.

A spin image is a kind-of histogram that can be computed at a selected vertex of the
mesh. Each spin image will have a set of contributing points used in its construction. The
size of the volume of contributing points depends on two spin-image parameters: D, the
maximumdistance from a contributing point to the selected vertex, and A, the angle allowed
between the normal of the contributing point and the normal of the vertex. A spin image is
constructed about a speci�ed oriented point o with respect to a set of contributing points
C that have been selected based on speci�ed spin-image parameters A and D. An array of
accumulators S(�; �) represents the spin image and is initially set to zero. Then for each
point c 2 C, its distance parameters � and � are computed with respect to the selected mesh
vertex o, and the accumulator bin corresponding to this � and � is incremented. Note that
the size of a bin in the accumulator array is on the order of the median distance between
vertices in the 3D mesh. Figure 14.18 gives some examples of spin images.
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2-D points spin-image

2-D points spin-image

2-D points spin-image

3-D surface mesh

Figure 14.18: Examples of spin images. (Figure courtesy of Andrew Johnson with permission
of IEEE. Reprinted from \E�cient Multiple Model Recognition in Cluttered 3-D Scenes,"
by A. E. Johnson and M. Hebert, Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, June 1998. c 1998 IEEE)

Spin images are constructed at each vertex of the mesh model. This gives information
on the local shape at every point of the mesh. To match two objects, the two sets of spin
images are used. The spin image at each point of the �rst object is compared to the spin
image at each point of the second object by computing the correlation coe�cient of the
pair. Those point pairs with high correlations form the 3D point correspondences needed
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for object matching. The point correspondences are grouped and outliers eliminated using
geometric consistency. Then, as in alignment in general, a rigid transformation is computed
and used to either verify the match or rule it out. Figure 14.19 shows the operation of the
spin-image recognition method on a di�cult, cluttered image containing six di�erent objects
that correspond to models in a database of twenty object models.

2D-3D Alignment Alignment can also be applied to 2D-3Dmatching in which the object
model is three-dimensional, but the data comes from a 2D image. In this case, the transfor-
mation frommodel points to data points is more complex. In addition to the 3D rotation and
3D translation, there is a perspective projection component. The full transformation can be
estimated from a set of point correspondences, a set of line segment correspondences, a 2D
ellipse to 3D circle plus single point correspondence, or combinations of all three types of
features. This gives us a very powerful tool for matching. Correspondences are hypothesized
either blindly or through relational matching (see below) and used to determine a potential
transformation. The transformation is applied to the 3D model features to produce 2D data
features. Here a new problem comes up that did not appear in 2D-2D or 3D-3D alignment.
In any 2D perspective view of a 3D object, some of the transformed features appear on
surfaces that do not face the camera and are occluded by other surfaces that are closer to
the viewer. Thus in order to accurately produce a set of transformed features to compare
to image features, a hidden feature algorithm must be applied. Hidden feature algorithms
are related to graphics rendering algorithms and, if applied in software, can be prohibitively
slow. If appropriate mesh models and graphics hardware is available, then the full rendering
is possible. Otherwise, it is common to either ignore the hidden feature problem or use an
approximate algorithm that is not guaranteed to be accurate, but may be good enough for
veri�cation.

The TRIBORS object recognition system uses view-class models of polyhedral objects
and �nds correspondences between triplets of model line segments and triplets of 2D im-
age line segments. Model triplets are ranked in a training phase so that triplets with high
probabilities of detection are selected �rst in the matching phase and those with low prob-
abilities are not considered at all. Triplets are described by a vector of nine parameters
that describe the appearance of that triplet in the view class being matched. Figure 14.20
shows the parametrization of a line segment triplet. A model triplet is matched to an image
triplet that has similar parameters. Once a match is hypothesized, the line junction points
from the data triplet are paired with the hypothesized corresponding 3D vertices from the
model, and an iterative point-to-point correspondence-based exterior orientation algorithm
(as given in Chapter 13) is used to determine the transformation. The transformation is
then applied to a wireframe model of the 3D object and the visible edges are determined
through a hidden line detection algorithm. For each predicted edge, the closest image line
segment is determined and veri�cation is performed based on how similar each predicted
edge is to its closest image segment. Figure 14.21 shows the operation of the TRIBORS
system.

Smooth Object Alignment We have talked about the alignment of a 3D mesh model
to a 3D range image and a 3D polyhedra model to a 2D intensity image. We consider here
the problem of computing the identity and pose of a free-form 3D object from a single 2D
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Scene Recognized Models

intensity image

3-D front view

3-D top view

Figure 14.19: Operation of the spin-image recognition system. (Figure courtesy of Andrew
Johnson with permission of IEEE. Reprinted from \E�cient Multiple Model Recognition in
Cluttered 3-D Scenes," by A. E. Johnson and M. Hebert, Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, June 1998. c 1998 IEEE)
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Figure 14.20: The parametrization of a line triplet in the TRIBORS system. The quantities
d2 and d3 are the distances from the midpoint of line l1 to the midpoints of lines l2 and l3,
respectively. Angles 2 and 3 are the angles that line segments l2 and l3 make with line
segment l1. Angles �2 and �3 are the angles between line segment l1 and the connecting
lines shown to l2 and l3, respectively.

Figure 14.21: (a) The edges extracted from a real image. (b) The matched triplet of line
segments (thick lines) and the initial pose estimate. (c) The �nal match and pose.

Exercise 6 Matching in TRIBORS

TRIBORS uses the 9 parameters associated with a triple of line segments to identify poten-
tial matches between a model triple and an image triple. Generate several di�erent views of
a single view class of a 3D polyhedral object, such as the chair object of Figure 14.11. Iden-
tify three major line segments that appear in all your views and compute the 9 parameters
shown in Figure 14.20. How similar are the di�erent parameter vectors that you computed?
Compare the 9 parameters of these three line segments to those of a completely di�erent
set of three line segments. How well do the 9 parameters discriminate among triples of line
segments?
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intensity image. The solution we will look at employs a view-class type of model, but the
representation of a view class is quite di�erent from the sets of triplets of line segments that
TRIBORS used and matching is performed at the lowest level on edge-images.

The algorithm discussed here is based on the work of Chen and Stockman, who created
a system to determine the pose of 3D objects with smooth surfaces. In this system, a 3D
object is modeled by a collection of 21

2
D views (called model aspects) each constructed from

�ve images taken by rotating the viewpoint up, down, left and right of a central viewpoint.
Input for construction of one model aspect of a car is shown in Figure 14.22. The silhouette
of the central edgemap is extracted and segmented into curve segments whose invariant
features are derived for indexing to this model aspect during recognition.

Stereo-like computations are performed to compute points [x,y,z] on the 3D rim for each
2D silhouette point [u,v] in the central image. The up and down images are used to compute
the curvature of the object rim in the y direction and the left and right images are used
to compute curvature in the x direction. Similarly, stereo-like computations are used to
compute the 3D locations of crease and mark points in the central edgemap. Thus, the 21

2
D

model aspects consist of the 3D rim, crease and mark points corresponding to the central
edge image plus the x and y curvature at each of these points. Using this information,
a mathematical formula can then produce an edge map for any other viewpoint in that
view class, given the view parameters. A view class is described by 1) the set of 3D points
and curvatures described above and 2) a set of invariant features to be used for indexing.
The 3D points are derived from stereo-like correspondences between the central and adja-
cent edgemaps as described in Chapter 13. The invariant features are derived from the 2D
edgemap of the central image as described in Chapter 10.

An image to be analyzed is processed to produce its edge map and a set of curve segments.
The curve segments are used to index the database of model views to produce object-view
hypotheses. The matching scheme tests hypotheses generated from the indexing scheme;
each hypothesis includes both object identity and approximate pose. Veri�cation is carried
out by �tting the 21

2
D aspect of each candidate model to the observed edgemap. Initially,

the pose of the object is set to the pose that would have produced the central aspect that has
been hypothesized to match. The projected edge image of that model aspect is compared to
the observed edge map. In most cases, they will not align well-enough. Thus the matching
will proceed by re�ning pose parameters ~! in order to diminish the 2D distance between the
projected model edgemap and the observed edgemap. Figure 14.23 illustrates the match-
ing step. The edgemap derived from the input image is shown in (a), and a model pose
hypothesized from the indexing step is shown in (b). Several iterations of model boundary
generation are shown in (c), and the �rst acceptable match is shown in (d).

14.4.2 Matching Relational Models

As in two-dimensional matching, relational models can be used in 3D object recognition
to move away from the geometric and toward the symbolic. Algorithm 3 summarizes the
basic relational distance matching technique that was described in Chapter 11, simpli�ed
to single relations. The exact models and methods used depend on whether the image data
is 3D or 2D.
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Figure 14.22: Five input images used for constructing one model aspect of a car.

3D Relational Models Three-dimensional relational models are composed of 3D primi-
tives and 3D spatial relationships. Primitives may be volumes, surface patches, or line/curve
features in 3D space. Generalized cylinders are commonly used as volumetric primitives
along with some kind of 3D connection relationship. Geons, or geometric ions, are volumet-
ric primitives hypothesized to be used in human vision, have also been used in 3D object
recognition. Industrial objects may be represented by their planar and cylindrical surfaces
and the surface adjacency relationship. Three-dimensional line and curve segments can be
used with di�erent kinds of spatial relationships, such as connections, parallel pairs, and
collinear pairs.

The sticks, plates, and blobs models were designed to describe very rough models of 3D
objects and are intended for the description and recognition of complex man-made objects,
which are made up of many parts. The parts can have at or curved surfaces, and they exist
in a large variety. Instead of trying to describe each part precisely, as in the surface{edge{
vertex models, for rough matching each part can be classi�ed as a stick, a plate, or a blob.
Sticks are long, thin parts that have only one signi�cant dimension. Plates are atish, wide
parts with two nearly at surfaces connected by a thin edge between them. Plates have two
signi�cant dimensions. Blobs are parts that have all three signi�cant dimensions. All three
kinds of parts are near{convex, so a stick cannot bend very much, the surfaces of a plate
cannot fold very much, and a blob can be bumpy, but cannot have large concavities. Figure
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(a) detected edges

(b) model aspect

(c) �tting steps (d) �nal �t

Figure 14.23: Matching edgemaps using 1:2 scale s; (a) observed edgemap; (b) the model
edgemap; (c) evolution of convergence in the alignment algorithm; (d) �tted edgemap shown
superimposed on the original image. (Example courtesy of Jin-Long Chen.)
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Exercise 7
In each case below explain how many object models and how many model aspects would be
needed for the application. Also, explain what accuracy of pose might be needed. (a) In a
carwash, the automatic machinery needs to reset itself according to the model of car that
has entered. (b) In a parking garage, a monitoring and inventory system needs to recognize
each car model that enters and exits and record the time of the event. (c) A computer vision
system needs to scan an automobile graveyard to record how many wrecks are present and
what kind they are.

Exercise 8
Make a curvature model aspect of some object and show that it can generate silhouettes of
that object under small rotations. For example, consider a torus of major outside diameter
10 and minor diameter of 1. The model aspect is centered at the view perpendicular to the
circle of the major diameter. De�ne a set of 3D points along the model silhouette together
with their x and y curvatures. Then show how this silhouette changes under small rotations
by creating synthetic images.

Determine if two relational descriptions are similar enough to match.
P is a set of model parts.
L is a set of possible labels for the parts.
RP is a relation over the parts.
RL is a relation over the labels.

Find a mapping f from P to L that minimizes the error given by ES(f) =j RP � f �RL j
+ j RL � f

�1 � RP j using an interpretation tree, discrete or probabilistic relaxation, or
other methods described in Chapter 11.

Algorithm 3: The Basic Relational Distance Matching Technique
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Figure 14.24: Several examples each of sticks, plates, and blobs.

14.24 shows several examples of sticks, plates, and blobs.

A sticks{plates{and{blobs model describes how the sticks, plates, and blobs are put
together to form an object. These descriptions are also rough; they cannot specify the phys-
ical points where two parts join. A stick has two logical end points, a logical set of interior
points, and a logical center of mass that can be speci�ed as connection points. A plate has
a set of edge points, a set of surface points, and a center of mass. A blob has a set of surface
points and a center of mass. Only this minimal information can be used in the object models.

The relational model for a sticks{plates{and{blobs model is a good example of a fairly de-
tailed symbolic object model that has been used successfully in symbolic object recognition.
It consists of �ve relations. The unary SIMPLE PARTS relation is a list of the parts of the
object. Each part has several descriptive attributes including its type (stick, plate or blob)
and may also include numeric information pertaining to the size and/or shape of the part.
The CONNECTS/SUPPORTS relation contains some of the most important information on
the structure of the object. It consists of 6-tuples of the form (s1; s2; SUPPORTS;HOW ).
The components s1 and s2 are simple parts, SUPPORTS is true if s1 supports s2 and false
otherwise, and HOW describes the connection type of s1 and s2.

The other four relations express constraints. The TRIPLE CONSTRAINT relation has
4{tuples of the form (s1; s2; s3; SAME) where simple part s2 touches both s1 and s3, and
SAME is true if s1 and s3 touch s2 on the same end (or surface) of s2 and false otherwise. The
PARALLEL relation and the PERPENDICULAR relation have pairs of the form (s1; s2)
where simple parts s1 and s2 are parallel (or perpendicular) in the model. Figure 14.25
illustrates the sticks{plates{and{blobs model of a prototype chair object. All chairs with
similar relations should match this model, regardless of the exact shapes of the parts.
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    1        Stick
    2        Stick
    3        Stick
    4        Stick
    5        Plate
    6        Plate

PART#  TYPE  SP1  SP2  SUPPORTS  HOW

SP1  SP2                          SP1  SP2

 1      2                                1      5
 1      3                                2      5
 1      4                                3      5
 2      3                                4      5
 2      4                                5      6
 3      4

CONNECTS-SUPPORTSSIMPLE-PARTS

PARALLEL                 PERPENDICULAR

1      5        True        end-edge
2      5        True        end-edge
3      5        True        end-edge
4      5        True        end-edge

TRIPLES

SP1  SP2  SP3  SAME

1       5       2     True

5      6        True       edge-edge 2       5       3     True

1       5       3     True
1       5       4     True
1       5       6     False

2       5       4     True
2       5       6     False
3       5       4     True
3       5       6     False
4       5       6     False

Figure 14.25: The full relational structure of the sticks{plates{and{blobs model of a chair
object.

Exercise 9 Sticks{plates{and{blobs models

Draw a picture of a simple polyhedral desk object and construct a full relational sticks{
plates{and{blobs model for the object.
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Figure 14.26: The left and right images of an industrial object and the edges extracted
through an image processing step that removes shadows and most highlights.

View-Class Relational Models When the data consists of 2D images, view class mod-
els can be used instead of full 3D object models. Training data derived either synthetically
or from a set of real images of the object can be used in the construction of these models.
Depending on the class of objects, a set of useful 2D features are extracted from images of
the object. The features extracted from each training image are used to produce a rela-
tional description of that view of the object. The relational descriptions are then clustered
to form the view-classes of the object. Each view class is represented by a combined re-
lational description that includes all the features that have been detected in all views of
that view class. The combined relational description is the relational model of the view
class. Typically, an object will have on the order of �ve view classes, each with its own rela-
tional description. The view-class models can be used for full relational matching, which is
expensive when there are many di�erent models in the database or for relational indexing,
as introduced in Chapter 11. For our example here, we take the relational indexing approach.

The RIO object recognition system recognizes 3D objects in multi-object scenes from
2D images. Images are taken in pairs, with the camera �xed for the pair. One image has
the light source at the left and the other has the light source at the right. The two images
are used to determine which regions are shadows and highlights, so that a high-quality edge
image of just the objects can be obtained. The edge image is used to obtain straight-line
and circular-arc segments from which the recognition features are constructed. Figure 14.26
shows a sample left and right image pair and the extracted edge image obtained. Figure
14.27 shows the straight lines and circular arcs extracted from the edge image.

RIO objects can have planar, cylindrical, and threaded surfaces. This leads to a number
of useful high-level features. The ten features employed by RIO are: ellipses, coaxial arcs
(two, three, and multiple), parallel pairs of line segments (both close and far), triples of
line segments (U-shaped and Z-shaped), L-junctions, Y-junctions, and V-junctions. Figure
14.28 shows some of the features constructed from the line segments and arcs of Figure
14.27. The line features include two L-junctions and a pair of parallel lines. The arc cluster
shows three coaxial arcs. Note that not every line segment or arc segment becomes a part
of the �nal features used in matching. Figure 14.29 illustrates the entire set of RIO features.

In addition to the labeled features, RIO uses labeled binary relations over the features
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Figure 14.27: The straight line segments and circular arcs extracted from the edge image of
Figure 14.26.
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Figure 14.28: The line features, arc features and ellipse features constructed from the lines
and arcs of Figure 14.27.
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(a) Ellipses (b) Coaxials-3

d >= 40 pixels

(c) Coaxials-multi (d) Parallel-far

d < 40 pixels

(e) Parallel-close (f) U-triple

(g) Z-triple (h) L-junction

(i) Y-junction (j) V-junction

Figure 14.29: Features used in the RIO system.
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(a) Share one arc (b) Share one line

(c) Share two lines (d) Coaxial

(e) Close at extremal points (f) Bounding box encloses/
is enclosed by bounding box

Figure 14.30: Relations between sample pairs of features.

to recognize objects. The relationships employed by RIO are: sharing one arc, sharing one
line, sharing two lines, coaxiality, proximity at extremal points, and encloses/enclosed-by,
as shown in 14.30.

The structural description of each model-view is a graph structure whose nodes are the
feature types and whose edges are the relationship types. For use in the relational index-
ing procedure, the graph is decomposed into a set of 2-graphs (graphs of two nodes), each
having two nodes and a relationship between them. Figure 14.31 shows one model-view of
a hexnut object, a partial full-graph structure representing three of its features and their
relationships, and the 2-graph decomposition.

Relational indexing in a procedure that matches an unknown image to a potentially large
database of object-view models, producing a small set of hypotheses as to which objects are
present in the image. There is an o�-line preprocessing phase to set up the data structures
and an on-line matching phase. The o�-line phase constructs a hash table that is used by
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Figure 14.31: Sample graph and corresponding 2-graphs for the \hexnut" object.

the on-line phase. The indices to the hash table are 4-tuples representing 2-graphs of a
model-view of an object. The components of the 4-tuple are the types of the two nodes
and the types of the two relationships. For example, the 4-tuple (ellipse, far parallel pair,
enclosed-by, encloses) means that the 2-graph represents an ellipse feature and a far parallel
pair feature, where the ellipse is enclosed by the parallel pair of line segments and the par-
allel pair thus encloses the ellipse. Since most of the RIO relations are symmetric, the two
relationships are often the same. For instance, the 4-tuple (ellipse, coaxial arc cluster, share
an arc,share an arc) describes a relationship where an ellipse and a coaxial arc cluster share
an arc segment. The symbolic components of the 4-tuples are converted to numbers for
hashing. The preprocessing stage goes through each model-view in the database, encodes
each of its 2-graphs to produce a 4-tuple index, and stores the name of the model-view and
associated information in a list in the selected bin of the hash table.

Once the hash-table is constructed, it is used in on-line recognition. Also used is a set
of accumulators for voting, one for each possible model-view in the database. When a scene
is analyzed, its features are extracted and a relational description in the form of a set of
2-graphs is constructed. Then, each 2-graph in the description is encoded to produce an
index with which to access the hash table. The list associated with the selected bin is re-
trieved; it consists of all model-views that have this particular 2-graph. A vote is then cast
for each model-view in the list. This is performed for all the 2-graphs of the image. At the
end of the procedure, the model-views with the highest votes are selected as hypotheses.
Figure 14.32 illustrates the on-line recognition process. The 2-graph shown in the �gure is
converted to the numeric 4-tuple (1,2,9,9) which selects a bin in the hash table. That bin
is accessed to retrieve a list of four models: M1, M5, M23, and M81. The accumulators of
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Figure 14.32: Voting scheme for relational indexing.

each of these model-views are incremented.

After hypotheses are generated, veri�cation must be performed. The relational indexing
step provides correspondences from 2D image features to 2D model features in a model-view.
These 2D model features are linked with the full 3D model features of the hypothesized ob-
ject. The RIO system performs veri�cation by using corresponding 2D-3D point pairs,
2D-3D line segment pairs, and 2D ellipse-3D circle pairs to compute an estimate of the
transformation from the 3D model of the hypothesized object to the image. Line and arc
segments are projected to the image plane and a distance is computed that determines if
the veri�cation is successful or if the hypothesis is incorrect. Figures 14.33 and 14.34 show a
sample run of the RIO system. Figure 14.33 shows the edge image from a multi-object scene
and the line features, circular arc features and ellipses detected. Figure 14.34 shows an incor-
rect hypothesis produced by the system, which was ruled out by the veri�cation procedure
and three correct hypotheses, which were correctly veri�ed. The RIO pose estimation proce-
dure was given in Chapter 13. Figure 14.35 shows a block diagram of the whole RIO system.

Exercise 10 Relational indexing

Write a program that implements relational indexing for object matching. The program
should use a stored library of object models, each represented by a set of 2-graphs. The
input to the recognition phase is a representation of a multi-object image, also in terms of
a set of 2-graphs. The program should return a list of each model in the database that has
at least 50% of its 2-graphs in the image.
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Figure 14.33: A test image and its line features, circular arc features, and ellipse features.

Figure 14.34: An incorrect hypothesis (upper left) and three correct hypotheses.
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using a single
camera and two different light sources

Acquire image pair

Remove shadows  and highlights

Extract primitive features
and combine to produce high-level features

and construct a set of 2-graphs representing the image
Compute relationships among high-level features

from the pair
and produce a combined image

obtain an edge image 

 pose estimation to verify or disprove the hypotheses
Use 3D mesh models of the objects and

and vote for potential object models
Use the 2-graphs to index the hash-table

Apply the Cannyedge operator to

Figure 14.35: Flow diagram of the RIO object recognition system.



40 Computer Vision: Mar 2000

14.4.3 Matching Functional Models

Geometric models give precise de�nitions of speci�c objects; a CAD model describes a sin-
gle object with all critical points and dimensions spelled out. Relational models are more
general in that they describe a class of objects, but each element of that class must have the
same relational structure. For example, a chair might be described as having a back, a seat,
and four legs attached underneath and at the corners of the seat. Another chair that has a
pedestal and base instead of four legs would not match this description. The function-based
approach to object recognition takes this a step further. It attempts to de�ne classes of ob-
jects through their function. Thus a chair is something that a human would sit on and may
have many di�erent relational structures, which all satisfy a set of functional constraints.

Function-based object recognition was pioneered by Stark and Bowyer in their GRUFF
system. GRUFF contains three levels of knowledge:

1. the category hierarchy of all objects in the knowledge base

2. the de�nition of each category in terms of functional properties

3. the knowledge primitives upon which the functional de�nitions are based

Knowledge Primitives Each knowledge primitive is a parametrized procedure that im-
plements a basic concept about geometry, physics or causation. A knowledge primitive takes
a portion of a 3D shape description as input and returns a value that indicates how well it
satis�es speci�c requirements. The six GRUFF knowledge primitives de�ne the concepts of:

� relative orientation

� dimensions

� proximity

� stability

� clearance

� enclosure

The relative orientation primitive is used to determine how well the relative orientation
of two surfaces satis�es some desired relationship. For example, the top surface of the seat
of a chair should be approximately perpendicular to the adjacent surface of the back. The
dimensions primitive performs dimensions tests for six possible dimension types: width,
depth, height, area, contiguous surface, and volume. In most objects the dimensions of
one part of the object constrain the dimensions of the other parts. The proximity primi-
tive checks for qualitative spatial relationships between elements of an object's shape. For
example, the handle of a pitcher must be situated above the average center of mass of an
object to make it easy to lift.

The stability primitive checks that a given shape is stable when placed on a supporting
plane in a given orientation and with a possible force applied. The clearance primitive checks
whether a speci�ed volume of space between parts of the object is clear of obstructions. For
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example, a rectangular volume above the seat must be clear for a person to sit on it.
Finally, the enclosure primitive tests for required concavities of the object. A wine goblet,
for instance, must have a concavity to hold the wine.

Functional Properties The de�nition of a functional object class speci�es the functional
properties it must have in terms of the Knowledge Primitives. The GRUFF functional
categories that have been used for objects in the classes furniture, dishes, and handtools are
de�ned by four possible templates:

� provides stable X

� provides X surface

� provides X containment

� provides X handle

where X is a parameter of the template. For example, a chair must provide stable support
and a sittable surface for the person who will sit on it. A soup bowl must provide stable
containment for the soup it will contain. A cup must contain a suitable handle that allows
it to be picked up and �ts the dimensions of its body.

The Category Hierarchy GRUFF groups all categories of objects into a category tree
that lists all the categories the system can currently recognize. At the top level of the tree
are very generic categories such as furniture and dishes. Each succeeding level goes into
more detail; for example, furniture has speci�c object classes chair, table, bench, bookshelf,
and bed. Even these object classes can be divided further; chairs can be conventional chairs,
lounge chairs, balans chairs, and highchairs, etc. Figure 14.36 shows portions of the GRUFF
category de�nition tree.

Rather than \recognizing an object," GRUFF uses the function-based de�nition of an
object category to reason about whether an observed object instance (in range data) can
function as a member of that category. There are two main stages of this function-based
analysis process: the pre-processing stage and the recognition stage. The preprocessing stage
is category independent; all objects are processed in the same manner. In this stage the 3D
data is analyzed and all potential functional elements are enumerated. The recognition stage
uses these elements to construct indexes that are used to rank order the object categories.
An index consists of a functional element plus its area and volume. Those categories that
would be impossible to match based on the index information are pruned from the search.
The others are rank ordered for further evaluation. For each class hypothesis, �rst each
of its knowledge primitives is invoked to measure how well a functional element from the
data �ts its requirements. Each knowledge primitive returns an evaluation measure. These
are then combined to form a �nal association measure that describes how well the whole
set of function elements from the data matches the hypothesized object category. Figure
14.37 shows a typical input to the GRUFF system, and Figure 14.38 shows a portion of the
functional reasoning in the analysis of that data.



42 Computer Vision: Mar 2000
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Figure 14.36: Portions of the GRUFF Category De�nition Tree. (Courtesy of Louise Stark
and Kevin Bowyer.)

range image segmented range image

Figure 14.37: Input data for the GRUFF system. (Courtesy of Louise Stark and Kevin
Bowyer.)

Exercise 11 Functional object recognition

Consider two tables: one with 4 legs at the 4 corners and the other having a pedestal. What
similarities between these two tables would a functional object recognition system use to
classify them both as the same object?
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Figure 14.38: Processing by the GRUFF system. (Courtesy of Louise Stark and Kevin
Bowyer.)
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14.4.4 Recognition by Appearance

In most 3D object recognition schemes, the model is a separate entity from the 2D images of
the object. Here we examine the idea that an object can be learned by memorizing a number
of 2D images of it: recognition is performed by matching the sensed image of an unknown
object to images in memory. Object representation is kept at the signal level; matching is
done by directly comparing intensity images. Higher level features, possibly from parts ex-
traction, are not used, and thus possibly time-consuming and complex programming that is
di�cult to test is not needed. Several problems with this signal level approach are addressed
below. The simplicity of appearance-based recognition methods have allowed them to be
trained and tested on large sets of images and some impressive results have been obtained.
Perhaps, the most important results have been obtained with human face recognition, which
we will use here as a clarifying example.

A coarse description of recognition-by-appearance is as follows.

� During a training, or learning, phase a database of labeled images is created. DB = f<
Ij [ ]; Lj >j=1;kg where Ij is the j-th training image and Lj is its label.

� An unknown object is recognized by comparing its image Iu to those in the database
and assigning the object the label Lj of the closest training image Ij . The closest
training image Ij can be de�ned by the minimum Euclidean distance jj Iu[ ]� Ij [ ] jj
or by the maximum dot product Iu � Ij , both of which were de�ned in Chapter 5.

There are, of course, complications in each step that must be addressed.

� Training images must be representative of the instances of objects that are to be
recognized. In the case of human faces (and most other objects), training must include
changes of expression, variation in lighting, and small rotations of the head in 2D and
3D.

� The object must be well-framed; the position and size of all faces must be roughly the
same. Otherwise, a search of size and position parameters is needed.

� Since the method does not separate object from background, background will be in-
cluded in the decisions and this must be carefully considered in training.

� Even if our images are as small as 100�100, which is su�cient for face recognition, the
dimension of the space of all images is 10; 000. It is likely that the number of training
samples is much smaller than this; thus, some method of dimensionality reduction
should be used.

While continuing, the reader should consider the case of discriminating between two classes
of faces | those with glasses and those without them; or, between cars with radio antennas
and those without them. Can these di�erences be detected among all the other variations
that are irrelevant?

We now focus on the important problem of reducing the number of signal features used
to represent our objects. For face recognition, it has been shown that dimensionality can be
reduced from 100�100 to as little as 15 yet still supporting 97% recognition rates. Chapter
5 discussed using di�erent bases for the space of R� C images, and showed how an image
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could be represented as a sum of meaningful images, such as step edges, ripple, etc. It was
also shown that image energy was just the sum of the squares of the coe�cients when the
image was represented as a linear combination of orthonormal basis images.

Basis Images for the Set of Training Images

Suppose for the present that a set of orthonormal basis images B can be found with the
following properties.

1. B = fF1; F2; : : : ; Fmg with m much smaller than N = R�C.

2. The average quality of representing the image set using this basis is satisfactory in the
following sense. Over all the M images Ij in the training set, we have
Imj = aj1F1 + aj2F2 + : : :+ ajmFm andPM

j=1 (jj I
m
j � Ij jj

2 = jj Ij jj)
2 > P%.

Imj is the approximation of original image Ij using a linear combination of just the m basis
images.

The top row of Figure 14.39 shows six training images from one of many individuals in
the database made available by the Weizmann Institute. The middle row of the �gure shows
four basis images that have been derived for representing this set of faces; the leftmost is
the mean of all training samples. The bottom row of the �gure shows how the original six
face images would appear when represented as a linear combination of just the four basis
vectors. Several di�erent research projects have shown that perhaps m = 15 or m = 20
basis images are su�cient to represent a database of face images (e.g. 3000 face images
in one of Pentland's studies), so that the average approximation of Imj is within 5% of Ij.
Therefore, matching using the approximation will yield almost the same results as matching
using the original image. It is important to emphasize that for the database illustrated
by Figure 14.39, each training image can be represented in memory by only four

numbers, which enables e�cent comparison with unknown images. Provided that the four
basis vectors are saved in memory, a close approximation to the original face image can be
regenerated when needed. (Note that the �rst basis vector is the mean of the original face
set and not actually one of the orthonormal set.)

Computing the Basis Images

Existence of the basis set B allows great compression in memory and speedup in com-
putations because m is much smaller than N , the number of pixels in the original image.
The basis images Fi are called principal components of the set of training samples. Algo-
rithm 4 below sketches recognition-by-appearance using these principal components. It has
two parts: an o�ine training phase and an online recognition phase. The �rst step in the
training phase is to compute the mean of the training images and use them to produce a set
� of di�erence images, each being the di�erence of a training image from the mean image.
If we think of each di�erence image �i as a vector of N elements, � becomes an array of N
rows andM columns. The next step is to compute the covariance matrix �� of the training
images. By de�nition, ��[i; i] is the variance of the ith pixel, while ��[i; j] is the covariance
of the ith and jth pixels, over all the training images. Since we have already computed the
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Figure 14.39: (Top row) Six training images from one of many individuals in a face image
database; (middle row) average training image and three most signi�cant eigenvectors de-
rived from the scatter matrix; (bottom row) images of the top row represented as a linear
combination of only the four images in the middle row. (Database of images courtesy of
The Weizmann Institute; processed images courtesy of John Weng.)
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mean and di�erence images, the covariance matrix is de�ned by

�� = �T� (14.5)

The size of this covariance matrix is very large, N � N , where N is the number of pixels
in an image, typically 256 � 256 or even 512 � 512. So the computation of eigenvectors
and eigenvalues in the next step of the algorithm would be extremely time-consuming if ��
were used directly. (See Numerical Recipes in C for the principal components algorithm.)
Instead, we can compute a related matrix �0

� given by

�0

� = ��T (14.6)

which is much smaller (M�M). The eigenvectors and eigenvalues of �0

� are related to those
of �� as follows:

��F = �F (14.7)

�0

�F
0 = �F 0 (14.8)

F = �TF 0 (14.9)

where � is the vector of eigenvalues of ��, F is the vector of eigenvectors of ��, and F 0 is
the vector of eigenvectors of �0

�.

The methods of principal components analysis discussed here have produced some im-
pressive results in face recognition (consult the references by Kirby and Sirovitch, Turk
and Pentland, and Swets and Weng). Skeptics might argue that this method is unlikely to
work for images with signi�cant high frequency variations because autocorrelation will drop
fast with small shifts in the image thus stressing the object framing requirement. Picture
functions for faces do not face this problem. Swets and Weng have shown good results with
many (untextured) objects other than faces as have Murase and Nayar, who were actually
able to interpolate 3D object pose to an accuracy of two degrees using a training base of
images taken in steps of ten degrees.

Turk and Pentland gave solutions to two of the problems noted above. First, they used

motion techniques, as in Chapter 9, to segment the head from a video sequence | this
enabled them to frame the face and also to normalize image size. Secondly, they reweighted
the image pixels by �ltering with a broad Gaussian that dropped the peripheral background
pixels to near zero while preserving the important center face intensities.
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O�ine Training Phase:

Input a set I of M labeled training images and produce
a basis set B and a vector of coe�cents for each image.

I = fI1; I2; : : : ; IMg is the set of training images. (input)
B = fF1; F2; : : : ; Fmg is the set of basis vectors. (output)
Aj = [aj1; aj2; : : : ; ajm] is the vector of coe�cients for image Ij . (output)

1. Imean = mean(I).

2. � = f�ij�i = Ii � Imeang, the set of di�erence images

3. �� = the covariance matrix obtained from �.

4. Use the principal components method to compute eigenvectors and eigenvalues of
��. (see text)

5. Construct the vector B as the basis set by selecting the most signi�cant m eigen-
vectors; start from the largest eigenvalue and continue in decreasing order of the
eigenvalues to select the corresponding eigenvectors.

6. Represent each training image Ij by a linear combination of the basis vectors:
Imj = aj1F1 + aj2F2 + : : :+ ajmFm

Online Recogniton Phase:

Input the set of basis vectors B, the database of coe�cient sets fAjg,
and a test image Iu. Output the class label of Iu.

1. Compute vector of coe�cients Au = [au1; au2; : : : ; aum] for Iu;

2. Find the h nearest neighbors of vector Au in the set fAjg;

3. Decide the class of Iu from the labels of the h nearest neighbors
(possibly reject in case neighbors are far or inconsistent in labels);

Algorithm 4: Recognition-by-Appearance using a Basis of Principal Components.
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Exercise 12
Obtain a set of 10 face images and 10 landscapes such that all images have the same
dimensions R�C. Compute the Euclidean distance between all pairs of images and display
the distances in a 20�20 upper triangular matrix. Do the faces cluster close together? The
landscapes? What is the ratio of the closest to farthest distance? Is the Euclidean distance
promising for retrieval from an image database? Explain.

Exercise 13

Let Iu be an image of an unknown object and let B = f< Ij ; Lj >g be a set of labeled
training images. Assume that all images are normalized so that jj Ij [ ] jj= 1. (a) Show that
jj Iu � Ij jj is minimized when Iu � Ij is maximized. (b) Explain why the result is not true
without the assumption that all images have unit size.

Better Discrimination and Faster Search of Memory

The methods of prinipal components analysis allow a subspace of training patterns to be
represented in a compact form. The basis that best represents the training data, computed
as above, has been called the set of most expressive features (MEFs). The work of John
Weng has demonstrated that while the most expressive features represent the subspace of
training images optimally, they need not represent well the di�erences between images in dif-
ferent classes. Weng introduced the use of the most discriminating features (MDFs), which
can be derived from discriminant analysis. MDFs focus on image variance that can di�er-
entiate objects in di�erent classes. Figure 14.40 contrasts MEFs with MDFs. The original
data coordinates are (x1; x2). y1 is the direction of maximum variance and y2 is orthogonal
to y1; thus, coordinates y1; y2 are MEFs. The original classes of vectors are represented by
the ellipses with major and minor axes aligned with y1; y2. (Recall that an algorithm for
�nding these axes in the 2D case was �rst presented in Chapter 3.) Thresholds on either

y1 or y2 do not discriminate well between the two classes. MDF axes z1; z2, computed from
discriminant analysis, allow perfect separation of the training samples based on a threshold
on z1.

A second improvement made by Weng and his colleagues to the \eigenspace recognition-
by-appearance" approach is the development of a search tree construction procedure that
provides O(log2S) search time for �nding the nearest neighbors in a database of S training
samples. Recall that decision trees for object classi�cation were introduced in Chapter 4. At
each decision point in the tree, an unknown image is projected onto the most discriminating
subspace needed to make a decision on which branch or branches to take next. The MDFs
used at di�erent nodes in the decision tree vary with the training samples from which they
were derived and are tuned to the particular splitting decisions that are needed. It is best
for the interested reader to consult the references to obtain more details on this recently
developed theory.
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Figure 14.40: The most expressive features determined by the eignevectors of the scatter
matrix represent the data well, but may not represent the di�erences between classes well.
Discriminant analysis can be used to �nd subspaces that emphasize di�erences between
classes. (Figure contributed by J. Swets and J. Weng.)

Exercise 14

(a) Obtain a set of 300 human face images and treat each one as a single vector of R � C

coordinates. (b) Compute the scatter matrix and mean image from these 300 samples. (c)
From the results in (b) compute the m largest eigenvalues of the scatter matrix and the
corresponding m eigenvectors so that 95% of the energy in the scatter matix is represented.
(d) Select 5 of the original faces at random; represent each as a linear combination of the
m best eigenvectors from (c). (e) Display each of the 5 approximations derived in (d) and
compare them to the original image.



Shapiro and Stockman 51

14.5 References

Mesh models come from computer graphics, where they are usually called polygon meshes.
The Foley et al. graphics text is a good reference for this subject. The surface-edge-vertex
representation was introduced in the VISIONS system at University of Massachusetts in the
1970s. The structure shown in this text comes from the more recent work of Camps (1992).
Generalized cylinder models were �rst proposed by Binford and utilized by Nevatia and
Binford (1977) who worked with range data. The more recent article by Rom and Medioni
discusses the computation of cylinders from 2D data. Octrees were originally proposed by
Hunter (1978) and developed further by Jackins and Tanimoto (1980). They are discussed
in detail in Samet's book (1990). Our discussion of superquadrics comes mostly from the
work of Gupta, Bogoni, and Bajcsy (1989), and the left vetricle illustrations are from the
more recent work of Park, Metaxas, and Axel (1996), which is also discussed in the section
on deformable models.

The introduction of the view-class concept is generally credited to Koenderink and Van
Doorn (1979). Camps (1992), Pulli (1996), and Costa (1995) used view-class models to rec-
ognize three-dimensional objects. Matching by alignment was introduced by Lowe (1987)
and thoroughly analyzed by Huntenlocher and Ullmann (1990). The 3D-3D alignment dis-
cussed here comes from the work of Johnson and Hebert (1998), while the 2D-3D discussion
comes from the work of Pulli (1996). The treatment of recognition-by-alignment of smooth
objects was taken from the work of Jin-Long Chen (1996), and is related to the original work
of Basri and Ullman (1988). Matching sticks-plates-and-blobs models was described in the
work of Shapiro et al. (1984). Relational matching in general was discussed in Shapiro and
Haralick (1981, 1985). Relational indexing can be found in the work of Costa (1995). Our
discussion on functional object recognition comes from the work of Stark and Bowyer (1996).

Kirby and Sirovich (1990) approached the problem of face image compression, which
Turk and Pentland (1991) then adopted for more e�cient recognition of faces. Swets and
Weng (1996) developed a general learning system, called SHOSLIF, which improved upon
the principal components approach by using MDFs and by constructing a tree-structured
database in order to search for nearest neighbors in log2N time. Murase and Nayar (1994)
also produced an e�cient search method and showed that 3D object pose might be estimated
to within 2� by interpolating training views taken at 10� intervals; moreover, while working
with several objects other than faces, they also found that an eigenspace of dimension 20 or
less was su�cient for good performance. The coverage of recognition-by-appearance in this
chapter drew heavily from the work of Weng and the frequently referenced work of Turk
and Pentland.

Energy minimization was used in the 70's for smoothing contours. However, the 1987
paper by Kass, Witkin and Terzopoulos in which the term snake was introduced, seemed
to freshly ignite the research interest of many other workers. Applications to �tting and
tracking surfaces and volumes quickly followed. Amini et al (1988) proposed dynamic pro-
gramming to �t active contours to images. One of many examples of it use in medical
images is Yue et al (1995). The works by Chen and Medioni (1995) and Park, Metaxas
and Axel (1996) are two good examples of rapidly developing research and applications in
physics-based and deformable modeling.

1. A. Amini, S. Tehrani and T. Weymouth (1988), Using dynamic programming for
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