
Chapter 13

3D Sensing and Object Pose

Computation

The main concern of this chapter is the quantitative relationship between 2D image struc-
tures and their corresponding 3D real world structures. The previous chapter investigated
relationships between image and world by primarily studying the qualitative phenomena.
Here, we show how to make measurements needed for recognition and inspection of 3D
objects and for robotic manipulation or navigation.

Figure 13.1: Two images of the driver of a car taken from two of four onboard cameras. A
multiple camera measurement system is used to compute the 3D location of certain body
points (identi�ed by the bright ellipses) which are then used to compute posture. (Images
courtesy of Herbert Reynolds, Michigan State University Ergonomics Lab.)

Consider Figure 13.1, for example. The problem is to measure the body posture of a
driver operating a car: the ultimate purpose is to design a better driving environment. In
another application, shown in Figure 13.2, the camera system must recognize 3D objects
and their pose so that a parts handling robot can grasp them. For this application, the
camera system and the robot arm communicate in terms of 3D world coordinates.

This chapter treats some of the engineering and mathematics for sensing in 3D. Problems
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Figure 13.2: The overlay of graphics on the image of three 3D objects has been used to
recognize and localize the objects. In order to do this, the recognition system has matched
2D image parts to 3D model parts and has computed the geometrical 3D transformation
needed to create the observed image from the model objects. The robot controller can then
be told of the identity and pose of each part. (Image courtesy of Mauro Costa.)

are formulated in terms of the intuitive geometry and then the mathematical models are
developed. The algebra of transformations in 3D is central to the mathematics. The role
of 3D object models is described and di�erent sensor con�gurations and their calibration
procedures are discussed.

13.1 General Stereo Con�guration

Figure 13.3 shows a general con�guration of two cameras viewing the same 3D workspace.
Often in computer graphics, a right-handed coordinate system is used with the -z axis ex-
tending out from the camera so that points farther from the camera have more negative
depth cordinates. We keep depth positive in most of the models in this chapter but some-
times use another system to be consistent with a published derivation. Figure 13.3 shows
a general stereo con�guration that does not have the special alignment of the cameras as
assumed in Chapter 12. The cameras both view the same workpiece on a worktable: the
worktable is the entire 3D world in this situation and it has its own global coordinate system
W attached to it. Intuitively, we see that the location of 3D point wP = [wPx;

wPy;
wPz]

t

in the workspace can be obtained by simply determining the intersection of the two imag-
ing rays wP1O and wP2O. We shall derive the algebra for this computation below: it is
straighforward but there are some complications due to measurement error.

In order to perform the general stereo computation illustrated in Figure 13.3, the fol-
lowing items must be known.

� We must know the pose of cameraC1 in the workspaceW and some camera internals,
such as focal length. All this information will be represented by a camera matrix,
which algebraically de�nes a ray in 3D space for every image point 1P. Sections 13.3
and 13.7 describe camera calibration procedures by which this information can be
obtained.
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Figure 13.3: Two cameras C1 and C2 view the same 3D workspace. Point P on a workpiece
is imaged at point 1P on the �rst image plane and at point 2P on the second image plane.

� Similarly, we must know the pose of camera C2 in the workspace W and its internal
parameters; equivalently, we need its camera matrix.

� We need to identify the correspondence of the 3D point to the two 2D image points
(wP; 1P; 2P).

� We need a formula for computing wP from the two imaging rays wP1O and wP2O.

Before addressing these items, we take the opportunity to describe three important vari-
ations on the con�guration shown in Figure 13.3.

� The con�guration shown in Figure 13.3 consists of two cameras calibrated

to the world coordinate space. Coordinates of 3D point features are computed by
intersecting the two imaging rays from the corresponding image points.

� One of the cameras can be replaced by a projector which illuminates one or
more surface points using a beam of light or a special pattern such as a crosshair.
This is shown in Figure 13.4. As we shall see below, the projector can be calibrated in
much the same manner as a camera: the projected ray of light has the same algebraic
representation as the ray imaging to a camera. Using a projector has advantages
when surface point measurements are needed on a surface that has no distinguishing
features.

� Knowledge of the model object can replace one of the cameras. Assume that
the height of the pyramid in Figure 13.3 is known; thus, we already know coordinate
wPz, which means that point P is constrained to lie on the plane z = wPz. The
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Figure 13.4: A projector can replace one camera in the general stereo con�guration. The
same geometric and algebraic constraints hold as in Figure 13.3; however, the projector can
add surface features to an otherwise featureless surface.

other two coordinates are easily found by intersecting the imaging ray from the single
camera C1 with that plane. In many cases model information adds enough constraint
so that a single camera is su�cient.

13.2 3D A�ne Transformations

A�ne transformations of 2D spaces were treated in Chapter 11. In this chapter, we make the

extension to 3D. These transformations are very important not only for 3D machine vision,
but also for robotics and virtual reality. Basic transformations are translation, rotation,
scaling and shear. These primitive transformations extend in a straightforward manner;
however, some are more di�cult to visualize. Once again we use the convenience of ho-
mogeneous coordinates, which extends a 3D point [Px; Py; Pz] to have the 4 coordinates
[sPx; sPy; sPz; s], where s is a nonzero scale factor. (As before, points are column vectors
but we will sometimes omit the transpose symbol as there is no ambiguity caused by this.)
In this chapter, we often use superscripts on point names because we need to name more
coordinate systems than we did in Chapter 11. Below, we add perspective, orthographic,
and weak perspective projections from 3D space to 2D space to our set of transformations.

13.2.1 Coordinate Frames

Coordinate frames or coordinate systems are needed in order to quantitatively locate points
in space. Figure 13.5 shows a scene with four di�erent relevant coordinate systems. Point
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Figure 13.5: Point P can be represented in terms of coordinates relative to four distinct
coordinate frames | (1) the model coordinate system M, (2) the world or workbench
coordinate system W, (3) sensor C, and sensor D. Coordinates change with the coordinate
frame; for example, point P appears to be left of Q to sensor C, but to the right of Q to D.

P, the apex of a pyramid, has four di�erent coordinate representations. First, the point is

represented in a CAD model as MP = [MPx;
M Py;

M Pz] = [b=2; b=2;
p
2
2
b], where b is the

size of its base. Second, an instance of this CAD model is posed on the workbench as shown.
The representation of the pyramid apex relative to the workbench frame is

WP = = [WPx;
W Py;

W Pz] = TR [b=2; b=2;

p
2

2
b]; (13.1)

where TR is the combined rotation and translation of coordinate frameM relative to coordi-
nate frameW. Finally, if two sensors C andD (or persons) view the pyramid from opposite
sides of the workbench, the left-right relationship between points P andQ is reversed: the co-
ordinate representations are di�erent. CP = [CPx;

C Py;
C Pz] 6= DP = [DPx;

D Py;
D Pz].

In order to relate sensors to each other, to 3D objects in the scene, and to manipulators
that operate on them, we will develop mathematical methods to relate their coordinate
frames. These same methods also enable us to model the motion of an object in space.
Sometimes we will use a convenient notation to emphasize the coordinate frame in which a
point is represented and the \direction" of the coordinate transformation. We denote the
transformationW

MT of a model point MP from model coordinates to workbench coordinates
WP as follows.

WP = W
MT MP (13.2)

This notation is developed in the robotics text by Craig (1986): it can be very helpful
when reasoning about motions of objects or matching of objects. In simple situations where
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the coordinate frame is obvious, we use simpler notation. We now proceed with the study
of transformations.

13.2.2 Translation

Translation adds a translation vector of three coordinates x0; y0; z0 to point 1P in coordi-
nate frame 1 to get point 2P in coordinate frame 2. In the example in Figure 13.5 some
translation (and rotation) is necessary in order to relate a point in model coordinates to its
pose on the workbench.

2P = T(x0; y0; z0)
1P

2P =

2
664

2Px
2Py
2Pz
1

3
775 =

2
664

1 0 0 x0
0 1 0 y0
0 0 1 z0
0 0 0 1

3
775
2
664

1Px
1Py
1Pz
1

3
775 (13.3)

13.2.3 Scaling

A 3D scaling matrix can apply individual scale factors to each of the coordinates. Sometimes,
all scale factors will be the same, as in the case of a change of measurement units or a uniform
scaling in instantiating a model to a certain size.

2P = S 1P = S(sx; sy; sz)
1P

2
664

2Px
2Py
2Pz
1

3
775 =

2
664

sx
2Px

sy
2Py

sz
2Pz
1

3
775 =

2
664

sx 0 0 0
0 sy 0 0
0 0 sz 0

0 0 0 1

3
775
2
664

1Px
1Py
1Pz
1

3
775 (13.4)

13.2.4 Rotation

Creation of a matrix representing a primitive rotation about a coordinate axis is especially
easy; all we need do is write down the column vectors of the matrix to be the transformed
values of the unit vectors under the rotation. (Recall that any 3D linear transformation is
completely characterized by how that transformation transforms the three basis vectors.)
The transformation about the z-axis is actually the same as the 2D transformation done in
Chapter 11, except that it now carries along a copy of the z-coordinate of the 3D point.
Figure 13.6 shows how the basis vectors are transformed by the primitive rotations.

Rotation of � about the X axis:

2P = R(1X; �) 1P
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Figure 13.6: Rotations by angle � about the (left) x-axis, (center) y-axis, and (right) z-axis.

2
664

2Px
2Py
2Pz
1

3
775 =

2
664

1 0 0 0
0 cos � � sin � 0
0 sin � cos � 0
0 0 0 1

3
775
2
664

1Px
1Py
1Pz
1

3
775 (13.5)

Rotation of � about the Y axis:

2P = R(1Y; �) 1P

2
664

2Px
2Py
2Pz
1

3
775 =

2
664

cos � 0 sin � 0
0 1 0 0

� sin � 0 cos � 0
0 0 0 1

3
775
2
664

1Px
1Py
1Pz
1

3
775 (13.6)

Rotation of � about the Z axis:

2P = R(1Z; �) 1P

2
664

2Px
2Py
2Pz
1

3
775 =

2
664

cos � � sin � 0 0
sin � cos � 0 0
0 0 1 0
0 0 0 1

3
775
2
664

1Px
1Py
1Pz
1

3
775 (13.7)

Exercise 1

Verify that the columns of the matrices representing the three primitive rotations are or-
thonormal. Same question for the rows.

Exercise 2

Construct the rotation matrix for a counterclockwise rotation of �=4 about the axis de�ned
by the origin and the point [1; 1; 0]t.
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Exercise 3

Show how to make the general construction of the rotation matrix given a rotation angle of
� radians and the direction cosines [cx; cy; cz]

t of the axis.
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Example: derive the combined rotation and translation needed to
transform world coordinates W into camera coordinates C.

To construct the rotation matrix R, we write the coordinates of
the basis vectors of W in terms of those of C so that any point in
W coordinates can be transformed into C coordinates.

WX =
�
p
2

2
CX+ 0 CY +

�
p
2

2
CZ

WY = 0 CX+ 1 CY + 0 CZ

WZ =

p
2

2
CX + 0 CY +

�
p
2

2
CZ (13.8)

These three vectors will be the three columns of the rotation matrix
encoding the orientation of camera frame C relative to the world
frame W. Once the camera \is rotated", world points must be
translated by d along the z-axis so that the world origin will be
located at coordinate [0; 0; d]t relative to C. The �nal change of
coordinate transformation is as follows.

C
WTR =

2
664

�
p
2

2
0

p
2
2

0
0 1 0 0

�
p
2

2
0 �

p
2

2
d

0 0 0 1

3
775 (13.9)

Check that CWTRWOw = C
WTR [0; 0; 0; 1]t = [0; 0; d; 1]t = COw,

and C
WTRWOc = C

WTR [d
p
2
2
; 0; d

p
2
2
; 1]t = [0; 0; 0; 1]t = COc.
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Exercise 4

Consider the environment of the previous example. Place a unit cube at the world origin
OW. Transform its corners Kj into camera coordinates. Verify that 4 of the edges have
unit length by computing jj Ki �Kj jj using camera coordinates.

O1

[5, 3, 0]
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. .O2
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[3, 4, 1].

[1, 2, 1]
1P

Figure 13.7: Two instances of the same block model.

13.2.5 Arbitrary Rotation

Any rotation can be expressed in the form shown in Equation 13.10. The matrix of co-
e�cients rij is an orthonormal matrix: all the columns (rows) are unit vectors that are
mutually orthogonal. All of the primitive rotation matrices given above have this property.
Any rigid rotation of 3D space can be represented as a rotation of some angle � about a
single axis A. A need not be one of the coordinate axes; it can be any axis in 3D space. To
see this, suppose that the basis vector 1X is transformed into a di�erent vector 2X. The
axis of rotation A can be found by taking the cross product of 1X and 2X. In case 1X is
invariant under the rotation, then it is itself the axis of rotation.

2P = R(A; �) 1P

2
664

2Px
2Py
2Pz
1

3
775 =

2
664

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

3
775
2
664

1Px
1Py
1Pz
1

3
775 (13.10)

As a consequence, the result of the motion of a rigid object moving from time t1 to time
t2 can be represented by a single translation vector and a single rotation matrix, regardless
of its actual trajectory during this time period. Only one homogeneous matrix is needed to
store both the translation and rotation: there are six parameters, three for rotation and
three for translation.

2
664

2Px
2Py
2Pz
1

3
775 =

2
664

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

3
775
2
664

1Px
1Py
1Pz
1

3
775 (13.11)
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Exercise 5

Refer to Figure 13.7. Give the homogeneous transformation matrix which maps all corners
of the block at the origin onto corresponding corners of the other block. Assume that corner
1O maps onto 2O and corner 1P maps onto 2P and that the transformation is a rigid
transformation.

Exercise 6 inverse of a rotation matrix
Argue that a rotation matrix always has an inverse. What is the inverse of the rotation
R(A; �) of Equation 13.10?

13.2.6 Alignment via Transformation Calculus

Here we show how to align a model triangle with a sensed triangle. This should be a convinc-
ing example of the value of doing careful calculus with transformations. More important,
it provides a basis for aligning any rigid model via correspondences between three model
points with three sensed points. The development is done only with algebra using the basic
transformation units already studied. Figures 13.8 and 13.9 illustrate the steps with a sketch
of the geometry.

The problem is to derive the transformation W
MT that maps the vertices A,B,C of a

model triangle onto the vertices D,E,F of a congruent triangle in the workspace. In order
to achieve this, we transform both triangles so that side AB lies along the WX-axis and so
that the entire triangle lies in the XY-plane of W. In such a con�guration, it must be that
coordinates of A and D are the same; also B and E, C and F. The transformation equation
derived to do this can be rearranged to produce the desired transformation W

MT mapping
each point MPi onto the corresponding WPi. The operations are given in Algorithm 1.
It should be clear that each of these operations can be done and that the inverse of each
exists. The family of operations requires careful programming and data structure design,
however. This is a very important operation; in theory, any two congruent rigid objects
can be aligned by aligning a subset of three corresponding points. In practice, measurement
and computational errors are likely to produce signi�cant error in aligning points far away
from the4ABC used. An optimization procedure using manymore points is usually needed.

13.3 Camera Model

Our goal in this section is to show that the camera model C in Equation 13.14 below is the
appropriate algebraic model for perspective imaging and then to show how to determine the
matrix elements from a �xed camera set up. The matrix elements are then used in computer
programs that perform 3D measurements.

IP = I
WC WP (13.14)

2
4 s IPr

s IPc
s

3
5 = I

WC

2
664

WPx
WPy
WPz
1

3
775 =

2
4 c11 c12 c13 c14

c21 c22 c23 c24
c31 c32 c33 1

3
5
2
664

WPx
WPy
WPz
1

3
775
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Exercise 7 inverse of a translation matrix
Argue that a translation matrix always has an inverse. What is the inverse of the translation
T(tx; ty; tz) of Equation 13.3?
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Figure 13.8: Part I Alignment of two congruent triangles. 4ABC is the model triangle
while 4DEF is the sensed triangle. First, object points are translated such that A and D
move to the origin. Second, each triangle is rotated so that rays AB and DE lie along the
X-axis.
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Compute rigid transformation W
MT that aligns model points A,B,C with world

points D,E,F

1. Input the three 3D model points A,B,C and the corresponding three 3D world points
D,E,F.

2. Construct translation W
MT1 to shift points so that model point A maps to the world

origin. Construct translation W
WT2 to shift world points so that D maps to the world

origin. This will align only points A and D in W.

3. Construct rotationW
WR1 so that side AB is along the X-axis. Construct rotationW

WR2

so that side DE is along the X-axis. This will align sides AB and DE in W.

4. Construct rotation W
WR3 about the X-axis so that point C maps into the XY-plane.

Construct rotation W
WR4 about the X-axis so that point F maps into the XY-plane.

Now all three points are aligned in W.

5. The model triangle and world triangle are now aligned, as represented by the following
equation.

W
WR3

W
WR1

W
MT1

MPi = W
WR4

W
WR2

W
WT2

WPi (13.12)

WPi = ( T�12 R�1
2 R�1

4 R3 R1 T1)
MPi (13.13)

6. Return W
MT = (T�12 R�1

2 R�1
4 R3 R1 T1)

Algorithm 1: Derive the rigid transformation needed to align a model triangle with a
congruent world triangle.

Exercise 8

Clearly, Algorithm 1 must fail if jj A � B jj 6= jj A � B jj. Insert the appropriate tests and
error returns to handle the case when the triangles are not congruent.

Exercise 9 * program the triangle alignment

Using the method sketched in Algorithm1, write and test a program to align a model triangle
with a congruent triangle in world coordinates. Write separate functions to perform each
basic operation.

Exercise 10

(a) Argue that the transformation returned by Algorithm 1 does in fact map model point
A to world point D, model point B to world E, and model C to world F. (b) Argue that
any other model point will maintain the same distances to A,B,C when transformed. (c)
Argue that if a rigid n-vertex polyhedral model can be aligned with an object in the world
using a rigid transformation, then the transformation can be obtained by aligning just two
triangles using Algorithm 1.
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IPr =
[c11 c12 c13 c14] � [WPx

WPy
WPz 1]

[c31 c32 c33 1] � [WPx WPy WPz 1]

IPc =
[c21 c22 c23 c24] � [WPx

WPy
WPz 1]

[c31 c32 c33 1] � [WPx WPy WPz 1]

We will justify below that the perspective imaging transformation is represented by this
3 x 4 camera matrix I

WC3�4, which projects 3D world point WP = [WPx;
WPy;

WPz]
t to

image point IP = [IPr;
IPc]

t. Using this matrix, there are enough parameters to model the
change of coordinates between worldW and camera C and to model all the scaling needed
for both perspective transformation and the scaling of the real image coordinates into row
and column of the image array. The matrix equation uses homogeneous coordinates: re-
moval of the scale factor s using the dot product is also shown in Equation 13.14. We will
now derive the parameters of the camera matrix I

WC.

13.3.1 Perspective Transformation Matrix

The algebra for the perspective tranformation was given in Chapter 12: the resulting equa-
tions are rephrased in Equation 13.15 below. Recall that these equations are derived from
the simple case where the world and camera coordinates are identical. Moreover, the image
coordinates [FPx;

FPy] are in the same (real) units as the coordinates in the 3D space and
not in pixel coorinates. (Think of the superscript F as denoting a \
oating point number"
and not focal length, which is the parameter f of the perspective transformation.)

FPx=f = CPx=
WPz or FPx = (f=CPz)

CPx (13.15)
FPy=f = CPy=

WPz or FPy = (f=CPz)
CPy

A pure perspective transformation shown in Figure 13.10 is de�ned in terms of the single
parameter f , the focal length. The matrix F

C�(f) is shown in Equation 13.16 in its 4 � 4
form so that it can be combined with other transformation matrices; however, the third row
producing FPz = f is not actually needed and is ultimately ignored and often not given.
Note that the matrix is of rank 3, not 4, and hence an inverse does not exist.

.
f P

Pc

Z c

.
Pc

x

xPXc

C

z
c

Zc= 0

F

Figure 13.10: With the camera frame origin at the center of projection, FPz = f always.

FP = F
C�(f) CP
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Figure 13.11: With the camera frame origin at the center of the image, FPz = 0 always.

2
664

s FPx
s FPy
s FPz
s

3
775 =

2
664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1=f 0

3
775
2
664

CPx
CPy
CPz
1

3
775 (13.16)

An alternative perspective transformation can be de�ned by placing the camera origin
at the center of the image so that FPz = 0 as shown in Figure 13.11. The projection matrix
would be as in Equation 13.17. (An advantage of this formulation is that it is obvious that
we get orthographic projection as f !1.)

FP = F
C�(f) CP

2
664

s FPx
s FPy
s FPz
s

3
775 =

2
664

1 0 0 0
0 1 0 0
0 0 0 0
0 0 1=f 1

3
775
2
664

CPx
CPy
CPz
1

3
775 (13.17)

In the general case, as in Figure 13.3, the world coordinate systemW is di�erent from the
camera coordinate system C. A rotation and translation are needed to convert world point
wP into camera coordinates cP. Three rotation parameters and three translation parame-
ters are needed to do this, but they are combined in complex ways to yield transformation
matrix elements as given in the previous sections.

cP = T(tx; ty; tz) R(�; �; 
)
wP

cP = c
wTR(�; �; 
; tx; ty; tz)

wP

2
664

cPx
cPy
cPz
1

3
775 =

2
664

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

3
775
2
664

wPx
wPy
wPz
1

3
775 (13.18)

We can compose transformations in order to model the change of coordinates from W

to C followed by the perspective transformation of CP onto the real image plane yielding
FP. The third row of the matrix is dropped because it just yields the constant value for
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FPz.
FP is on the real image plane and a scaling transformation is needed to convert to

the pixel row and column coordinates of IP. Recall that matrix multiplication representing
composition of linear transformations is associative.

FP = F
C�(f) CP

= F
C�(f) (CWTR(�; �; 
; tx; ty; tz)

WP)

= ( FC�(f) C
WTR(�; �; 
; tx; ty; tz) )

WP

2
4 s FPx

s FPy
s

3
5 =

2
4 d11 d12 d13 d14

d21 d22 d23 d24
d31 d32 d33 1

3
5
2
664

WPx
WPy
WPz
1

3
775 (13.19)

The matrix Equation 13.19 uses elements dij and not cij because it is not quite the camera
matrix, whose derivation was our goal. This is because our derivation thus far has used
the same units of real space, say mm or inches, and has not included the scaling of image
points into pixel rows and columns. Scale factors converting mm to pixels for the image
rows and columns are easily combined with Equation 13.19 to obtain the full camera matrix
C. Suppose that dx is the horizontal size and dy is the vertical size of a pixel in real-valued
units. Instead of the real-valued coordinates [FPx

FPy] whose reference coordinate system
has [0.0,0.0] at the lower left of the image, we want to go one step further to the integer-
valued coordinates [r; c] that refer to the row and column coordinates of a pixel of the image
array whose reference coordinate system has [0,0] at the top left pixel of the image. The
transformation from the real numbers to pixels, including the reversal of direction of the
vertical axis is given by

IP =

2
4 s r

s c

s

3
5 = I

FS

2
4 s FPx

s FPy
s

3
5 (13.20)

where I
FS is de�ned by

I
FS =

2
4 0 � 1

dy
0

1
dx

0 0

0 0 1

3
5 (13.21)

The �nal result for the full camera matrix that transforms 3D points in the real world to
pixels in an image is given by

Ip = ( IFS
F
C�(f) C

WTR(�; �; 
; tx; ty; tz) )
WP

2
4 s IPr

s IPc
s

3
5 =

2
4 c11 c12 c13 c14

c21 c22 c23 c24
c31 c32 c33 1

3
5
2
664

WPx
WPy
WPz
1

3
775 (13.22)

which is the full camera matrix of Equation 13.14.

Let us review intuitively what we have just done to model the viewing of 3D world
points by a camera sensor. First, we have placed the camera so that its coordinate system
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is aligned completely with the world coordinate system. Next, we rotated the camera (w
0

w R)
into its �nal orientation relative to W. Then, we translated the camera (cw0T) to view the
workspace from the appropriate position. Now all 3D points can be projected to the image
plane of the camera using the model of the perspective projection (Fc�(f )). Finally, we
need to scale the real image coordinates [FPx;

FPy] and reverse the direction of the vertical
axis to get the pixel coordinates [iPr;

iPc]. We have used our transformation notation fully
to account for all the steps. It is usually di�cult to actually execute this procedure with
enough precision in practice using distance and angle measurements to obtain a su�ciently
accurate camera matrix C to use in computations. Instead, a camera calibration procedure
is used to obtain the camera matrix. While the form of the camera matrix is justi�ed by
the above reasoning, the actual values of its parameters are obtained by �tting to control
points as described below. Before treating calibration, we show some important uses of the
camera matrix obtained by it.

Exercise 11

From the arguments of this section, it is easy to see that the form of the camera matrix is
as follows. 2

4 s IPr
s IPc
s

3
5 =

2
4 c11 c12 c13 c14

c21 c22 c23 c24
c31 c32 c33 c34

3
5
2
664

WPx
WPy
WPz
1

3
775 (13.23)

Show that we can derive the 11 parameter form of Equation 13.22 from this 12 parameter
form just by scaling the camera matrix by 1=c34. Verify that the 11 parameter form performs
the same mapping of 3D scene points to 2D image points.

13.3.2 Orthographic and Weak Perspective Projections

The orthographic projection of CP just drops the z-coordinate of the world point: this is
equivalent to projecting each world point parallel to the optical axis and onto the image
plane. Figure 13.12 compares perspective and orthographic projections. Orthographic pro-
jection can be viewed as a perspective projection where the focal length f has gone to in�nity
as shown in Equation 13.24. Orthographic projection is often used in computer graphics
to convey true scale for the cross section of an object. It is also used for development of
computer vision theory, because it is simpler than perspective, yet in many cases a good
enough approximation to it to test the theory.

FP = F
C�(1) CP

�
FPx
FPy

�
=

�
1 0 0 0
0 1 0 0

�2664
CPx
CPy
CPz
1

3
775 (13.24)

Often, perspective transformation can be nicely approximated by an orthographic projec-
tion followed by a uniform scaling in the real image plane. Projecting away the z-coordinate
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Figure 13.12: Perspective projection (left) versus orthographic (right).

of a point and applying uniform scaling has been called weak perspective. A good scale
factor is the ratio of the stando� of the object to the focal length of the camera (s = f=d in
Figure 13.12).

FP = F
C�(s) CP

�
FPx
FPy

�
=

�
s 0 0 0
0 s 0 0

�2664
CPx
CPy
CPz
1

3
775 (13.25)

A rule of thumb is that the approximation will be acceptable if the stando� of the ob-
ject is 20 times the size of the object. The approximation also depends upon how far the
object is o� the optical axis; the closer the better. As the triangular object of Figure 13.12
moves farther to the right of the optical axis, the perspective images of points A and B
will crowd closer together until B will be occluded by A; however, the orthographic im-
ages of A and B will maintain their distance. Most robotic or industrial vision systems
will attempt to center the object of attention in the �eld of view. This might also be true
of aerial imaging platforms. In these cases, weak perspective might be an appropriate model.

Exercise 12

Derive Equation 13.24 from Equation 13.16 using f !1.

Mathematical derivations and algorithms are usually more easily developed using weak
perspective rather than true perspective. The approximation will usually be good enough
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Table 13.1: Weak Perspective versus True Perspective
wPx f = 5mm s = 5=1000 f = 20mm s = 20=1000 f = 50 s = 50=1000

0 0.000 0.000 0.000 0.000 0.000 0.000

10 0.051 0.050 0.204 0.200 0.510 0.500

20 0.102 0.100 0.408 0.400 1.020 1.000

50 0.255 0.250 1.020 1.000 2.551 2.500

100 0.510 0.500 2.041 2.000 5.102 5.000

200 1.020 1.000 4.082 4.000 10.204 10.000

500 2.551 2.500 10.204 10.000 25.510 25.000

1000 5.102 5.000 20.408 20.000 51.020 50.000

Com-

parison of values iPx computed by the perspective transformation F
C�pers(f ) versus

transformation using weak perspective F
C�weak(s) with scale s = f=1000 for 3D points

[cPx; 0; 980]
t. Focal lengths for perspective transformation are 5; 20 and 50mm. Weak

perspective scale is set at f=1000 for a nominal stando� of 1000mm.

to do the matching required by recognition algorithms. Moreover, a closed form weak
perspective solution might be a good starting point for a more complex iterative algorithm
using true perspective. Huttenlocher and Ullman have published some fundamental work
on this issue. Table 13.1 gives some numerical comparisons between true perspective and
weak perspective: the data shows a good approximation within the range of the table.

By substituting into the de�nition given above, a weak perspective transformation is
de�ned by eight parameters as follows.

FP = F
C�weak

C
WTR WP

�
FPx
FPy

�
=

�
s 0 0 0
0 s 0 0

�2664
r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tx
0 0 0 1

3
775
2
664

WPx
WPy
WPz
1

3
775 (13.26)

=

�
c11 c12 c13 c14
c21 c22 c23 c24

�2664
WPx
WPy
WPz
1

3
775 (13.27)

Exercise 13

While Equation 13.27 shows eight parameters in the weak perspective transformation, there
are only seven independent parameters. What are these seven?

13.3.3 Computing 3D Points Using Multiple Cameras

We show how to use two camera models to compute the unknown 3D point [x; y; z] from
its two images [r1; c1] and [r2; c2] from two calibrated cameras. Since the coordinate system
for our points is now clear, we drop the superscripts from our point notation. Figure 13.3
sketches the environment and Equation 13.14 gives the model for each of the cameras. The
following imaging equations yield four linear equations in the three unknowns x; y; z.
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2
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2
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Eliminating the homogeneous coordinate s and t from Equations 13.28, we obtain the
following four linear equations in the three unknowns.

r1 = (b11 � b31r1)x+ (b12 � b32r1)y + (b13 � b33r1)z + b14

c1 = (b21 � b31c1)x+ (b22 � b32c1)y + (b23 � b33c1)z + b24

r2 = (c11 � c31r2)x+ (c12 � c32r2)y + (c13 � c33r2)z + c14

c2 = (c21 � c31c2)x+ (c22 � c32c2)y + (c23 � c33c2)z + c24 (13.29)

Any three of these four equations could be solved to obtain the point [x; y; z]; however,
each subset of three equations would yield slightly di�erent coordinates. Together, all four
simultaneous equations are typically inconsistent, because due to approximation errors in
the camera model and image points, the two camera rays will not actually intersect in math-
ematical 3D space. The better solution is to compute the closest approach of the two skew
rays, or equivalently, the shortest line segment connecting them. If the length of this segment
is suitably short, then we assign its midpoint as the intersection of the rays, which is the
point [x; y; z] as shown in Figure 13.13. If the shortest connecting segment is too long, then
we assume that there was some mistake in corresponding the image points [r1; c1] and [r2; c2].

.

.

.
.

.P

Q

Q

P

1

2

2

.

.

u

u Q  + a  u22

1

121

P  + a  u1 1 1

[ x, y, z ] w=   P
V

P1 and P2 are points on one line, while Q1

and Q2 are points on the other line. u1 and
u2 are unit vectors along these lines. Vector
V = P1+ a1u1� (Q1+ a2u2) is the shortest
(free) vector connecting the two lines, where
a1; a2 are two scalars to be determined. a1; a2
can be determined using calculus to minimize
the length of V; however, it is easy to com-
pute them using the constraints that V must
be orthogonal to both u1 and u2.

Figure 13.13: The shortest distance between two skew lines is measured along a connecting
line segment that is orthogonal to both lines.

Applying the orthogonality constraints to the shortest connecting segment yields the
following two linear equations in the two unknowns a1; a2.

((P1 + a1u1) � (Q1 + a2u2)) � u1 = 0

((P1 + a1u1) � (Q1 + a2u2)) � u2 = 0 (13.30)
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1 a1 � (u1 � u2) a2 = (Q1 � P1) � u1

(u1 � u2) a1 � 1 a2 = (Q1 � P1) � u2 (13.31)

These equations are easily solved for a1; a2 by elimination of variables or by the method of
determinants to obtain these solutions.

a1 =
(Q1�P1) � u1 � ((Q1�P1) � u2) � (u1�u2)

1�(u1�u2)2

a2 =
((Q1�P1) � u1)(u1�u2) � (Q1�P1) � u2

1�(u1�u2)2
(13.32)

Provided that jjV jj is less than some threshold, we report the \intersection" of the two
lines as [x; y; z]t = (1=2)[(P1 + a1u1) + (Q1 + a2u2)]. It's important to go back to the
beginning and realize that all the computations depend upon being able to de�ne each of
the lines by a pair of points (e.g. P1;P2) on the line. Often, each ray is determined by the
optical center of the camera and the image point. If the optical center is not known, a point
on the �rst camera ray can be found by choosing some value z = z1 and then solving the
two Equations 13.29 for coordinates x and y. If the ray is nearly parallel with the z-axis,
then x = x0 should be chosen. In this manner, the four needed points can be chosen.

Exercise 14

Implement and test a function in your favorite programming language to determine both the
distance between two skew lines and the midpoint of the shortest connecting line segment.
The function should take four 3D points as input and execute the mathematical formulas
in this section.

Exercise 15

Use of Cramer's rule to solve Equations 13.31 for a1; a2 requires that the determinant of the
matrix of coe�cients be nonzero. Argue why this must be the case when two cameras view
a single point.

We can use one camera and one projector to sense 3D surfaces. The geometry and math-
ematics is the same as in the two camera case. The biggest advantage is that a projector can
arti�cially create surface texture on smooth surfaces so that feature points may be de�ned
and put into correspondence. Use of structured light is treated below, after we show how
to obtain camera models or projector models via calibration.

13.4 Best A�ne Calibration Matrix

The problem of camera calibration is to relate the locations of the pixels in the image array
of a given camera to the real-valued points in the 3D scene being imaged. This process gen-
erally precedes any image analysis procedures that involve the computation of 3D location
and orientation of an object or measurements of its dimensions. It is also needed for the
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Figure 13.14: The calibration jig at the left has 9 dowels of random height (it can be rotated
3 times to obtain 25 unique calibration points). The image of the jig is on the display at
the right.

stereo triangulation procedure described earlier.

It was shown in Section 13.3 that the eleven parameter camera matrix of Equation 13.14
was an appropriate mathematical model. We now show how to derive the values of the
eleven parameters using least squares �tting. The camera view and focus are �xed and a
calibration object, or jig, with known measurements is placed in the scene as in Figure 13.14.
A set of n data tuples < IPj;

WPj > are then taken: IPj = [IPr;
I Pc] is the pixel in the

image where 3D point WPj = [WPx;
W Py;

W Pz] is observed. The number of points n must
be at least 6, but results are better with n = 25 or more.

13.4.1 Calibration Jig

The purpose of a calibration jig is to conveniently establish some well-de�ned 3D points.
Figures 13.14, 13.18 and 13.22 show three di�erent jigs. The jig is carefully located in the
world coordinate systemW, or perhaps de�nes the world coordinate system itself, such that
the 3D coordinates [WPx;

W Py;
W Pz] of its features are readily known. The camera then

views these features and obtains their 2D coordinates [IPr;
I Pc]. Other common types of

jigs are rigid frames with wires and beads or rigid boards with special markings.

13.4.2 De�ning the Least-Squares Problem

Equation 13.33 was obtained by eliminating the homogeneous scale factor s from the imaging
model. We thus have two linear equations modeling the geometry of each imaging ray, and
we have one ray for each calibration point. To simplify notation and also to avoid confusion
of symbols we use [xj; yj ; zj] for the world point WPj = [WPx;

W Py;
W Pz], and [uj; vj] for

the image point IPj = [IPr ;
I Pc]. For each calibration point, the following two equations



Shapiro and Stockman 23

(0,6,0)
B

K
(2,0,0)

G
(5.5,0,-3.5)

F
(2.75,0,-4.5)

E
(8.25,0,-4.5)

(2.75,0,-1.8125)
P

O
J

D (11,0,0)

C
(11,6,0)M

N

H

L

A

Other corners can be determined by symmetry

I

Y

X
W

W

Z
W

Figure 13.15: Precisely machined jig with many corners; the jig is 11 inches long, 6 inches
wide and 4.5 inches high. All 3D corner coordinates are given in Figure 13.18.

are obtained.

uj = (c11 � c31uj)xj + (c12 � c32uj)yj + (c13 � c33uj)zj + c14

vj = (c21 � c31vj)xj + (c22 � c32vj)yj + (c23 � c33vj)zj + c24

(13.33)

We rearrange the equations separating the knowns from the unknowns into vectors. All
the entities on the left are known from the calibration tuples, while all the ckm on the right
are unknowns to be determined.

�
xj; yj ; zj; 1; 0; 0; 0;0;�xjuj;�yjuj;�zjuj
0; 0; 0; 0; xj; yj; zj; 1;�xjvj ;�yjvj;�zjvj

�

2
66666666666666664

c11
c12
c13
c14
c21
c22
c23
c24
c31
c32
c33

3
77777777777777775

=

�
uj
vj

�
(13.34)

Since each imaging ray gives two such equations, we obtain 2n linear equations from n

calibration points, which can be compactly represented in the classic matrix form where x
is the column vector of unknowns and b is the column vector of image coordinates.

A2n�11 x11�1 � b2n�1 (13.35)

Since there are 11 unknowns and 12 or more equations, this is an overdetermined system.
There is no vector of parameters x for which all the equations hold: a least squares solu-
tion is appropriate. We want the set of parameters such that the sum (over all equations)
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Figure 13.16: Image plane residuals are the di�erences between the actual observed image
points (open dots) and the points computed using the camera matrix of Equation 13.14
(�lled dots).

of the squared di�erences between the observed coordinate and the coordinate predicted
by the camera matrix is minimized. Figure 13.16 shows four of these di�erences for two
calibration points. These di�erences are called residuals as in Chapter 11. Figure 13.17
gives an abstract representation of the least squares solution: we want to compute the ckm
that give a linear combination of the columns of A closest to b. The key to solving this
problem is the observation that the residual vector r = b�Ax is orthogonal to the column
space of A yielding Atr = 0. Substituting b�Ax for r, we obtain AtAx = Atb. AtA

is symmetric and positive de�nite, so it has an inverse, which can be used to solve for
x = (AtA)�1Atb. Several common libraries of numerical methods are available to solve
this. (Using MATLAB, the solution is invoked using the simple statement X = A \ B. Once
the least squares solution X is found, the vector R of residuals is computed as R = B� AX.)
Consult the Heath (1997) reference or the users manual for your local linear algebra library.)

Figure 13.18 shows example results of computing the camera matrix for a camera viewing
the calibration jig shown in Figure 13.15. The corners of the jig are labeled 'A' to 'P' and
their world coordinates [X,Y,Z] are given in Figure 13.18 alongside the image coordinates
[U,V] where the camera images them. Corner points 'B', 'C' and 'M' are occluded in this
view, so no image coordinates are available. The camera matrix obtained by �tting the
13 correspondences is given at the bottom of the �gure and the residuals are shown at the
right. 16 of the 26 coordinates computed by the camera matrix applied to the 3D points are
within one pixel of the observed image coordinate, 10 are more than one pixel di�erent, but
only 2 are o� by two pixels. This example supports the validity of the a�ne camera model,
but also exhibits the errors due to corner location and the distortion of a short focal length
lens.
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Column  space  of  matrix A

( orthogonal )
residual

b

r

A x = b’

Figure 13.17: Least squares solution of the system Ax � b. The plane represents the 11-
dimensional column space of matrix A2n x 11. All linear combinations Ax must be in this
space, but B2n x 1 will not be in it. The least squares solution computes b0 as the projection
of b onto the 11D space, making b0 the closest point in the space to b.

#

# IMAGE: g1view1.ras

#

# INPUT DATA | OUTPUT DATA

# |

Point Image 2-D (U,V) 3-D Coordinates (X,Y,Z) | 2-D Fit Data Residuals X Y

|

A 95.00 336.00 0.00 0.00 0.00 | 94.53 337.89 | 0.47 -1.89

B 0.00 6.00 0.00 | |

C 11.00 6.00 0.00 | |

D 592.00 368.00 11.00 0.00 0.00 | 592.21 368.36 | -0.21 -0.36

E 472.00 168.00 8.25 0.00 -4.50 | 470.14 168.30 | 1.86 -0.30

F 232.00 155.00 2.75 0.00 -4.50 | 232.30 154.43 | -0.30 0.57

G 350.00 205.00 5.50 0.00 -3.50 | 349.17 202.47 | 0.83 2.53

H 362.00 323.00 5.00 6.00 -3.50 | 363.44 324.32 | -1.44 -1.32

I 97.00 305.00 0.00 0.00 -0.75 | 97.90 304.96 | -0.90 0.04

J 592.00 336.00 11.00 0.00 -0.75 | 591.78 334.94 | 0.22 1.06

K 184.00 344.00 2.00 0.00 0.00 | 184.46 343.40 | -0.46 0.60

L 263.00 431.00 2.00 6.00 0.00 | 261.52 429.65 | 1.48 1.35

M 9.00 6.00 0.00 | |

N 501.00 363.00 9.00 0.00 0.00 | 501.16 362.78 | -0.16 0.22

O 467.00 279.00 8.25 0.00 -1.81 | 468.35 281.09 | -1.35 -2.09

P 224.00 266.00 2.75 0.00 -1.81 | 224.06 266.43 | -0.06 -0.43

# CALIBRATION MATRIX

44.84 29.80 -5.504 94.53

2.518 42.24 40.79 337.9

-0.0006832 0.06489 -0.01027 1.000

Figure 13.18: Camera calibration output using the jig in Figure 13.15.
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Exercise 16 replication of camera model derivation

(a) Locate software to perform least-squares �tting. Enter the point correspondences from
Figure 13.18 and compute the camera matrix: compare it to the matrix shown in Fig-
ure 13.18. (b) Delete three points with the largest residuals and derive a new camera
matrix. Are any of the new residuals worse than 2 pixels? (c) De�ne the 3D coordinates
of a 1 x 1 x 1 cube that would rest on one of the top horizontal surfaces of the jig shown
in Figure 13.15. Transform each of the eight corners of the cube into image coordinates by
using the derived camera matrix. Also transform the four points de�ning the surface on
which the cube rests. Plot the images of the transformed points and draw the connecting
edges. Does the image of the cube make sense?

Exercise 17 subpixel accuracy

Refer to Figure 13.14. The center of the dowels can be computed to subpixel accuracy using
the methods of Chapter 3. How? Can we use these noninteger coordinates for [IPr;

I Pc] for
the calibration data? How?

Exercise 18 best weak perspective camera model

Find the best weak perspective camera matrix to �t the data at the left in Figure 13.18.
Carefully go back over the derivation of the simpler imaging equations to develop a new
system of equationsA x = b. After obtaining the best cameramatrix parameters, compare
its residuals with those at the right in Figure 13.18.

Table 13.2: 3D feature points of jig imaged with two cameras. 3D world coordinates
wx;w y;w z are in inches. Coordinates of image 1 are 1u and 1v and are in row and column
units. Coordinates of image 2 are 2u and 2v.

Point wx wy wz 1u 1v 2u 2v

A 0.0 0.0 0.0 167 65 274 168

B 0.0 6.0 0.0 96 127 196 42

C 11.0 6.0 0.0 97 545 96 431

D 11.0 0.0 0.0 171 517 154 577

E 8.25 0.0 -4.5 352 406 366 488

F 2.75 0.0 -4.5 347 186 430 291

G 5.5 0.0 -3.5 311 294 358 387

H 5.5 6.0 -3.5 226 337 NA NA

I 0.0 0.0 -0.75 198 65 303 169

J 11.0 0.0 -0.75 203 518 186 577

K 2.0 0.0 0.0 170 143 248 248

L 2.0 6.0 0.0 96 198 176 116

M 9.0 6.0 0.0 97 465 114 363

N 9.0 0.0 0.0 173 432 176 507

O 8.25 0.0 -1.81 245 403 259 482

P 2.75 0.0 -1.81 242 181 318 283
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Exercise 19 camera calibration
Table 13.2 shows the image points recorded for 16 3D corner points of the jig from Fig-
ure 13.15. In fact, coordinates in two separate images are recorded. Using the a�ne cali-
bration procedure, compute a camera matrix using the 5-tuples from table columns 2-6.

Exercise 20 stereo computation

(a) Using the data in Table 13.2, compute two calibration matrices, one from columns 2-6
and one from columns 2-4 and 7-8. (b) Using the method of Section 13.3.3, compute the
3D coordinates of point A using only the two camera matrices and the image coordinates
in columns 5-8 of the Table. Compare your result to the coordinates in Columns 2-4 of the
table. (c) Consider the obtuse corner point between corner points I and P of the jig; call
it point Q. Suppose point Q images at [196,135] and [281,237] respectively. Use the stereo
method to compute the 3D coordinates of world point Q and verify that your results are
reasonable.

13.4.3 Discussion of the A�ne Method

The major issue relates to whether or not there really are 11 camera model parameters to
estimate. As we have seen, there are only 3 independent parameters of a rotation matrix
and 3 translational parameters de�ning the camera pose in world coordinates. There are 2
scaling factors relating real image coordinates to pixel rows and columns and focal length f .
Thus, not all 11 parameters are independent. Treating them as independent means that the
rotation parameters will not de�ne an orthonormal rotation matrix. In case of a precisely
built camera, we waste constraints; however, if the image plane might not be perpendicular
to the optical axis, the increased parameters can produce a better model. We need more
calibration points to estimate more free parameters, and the parameters that are derived
do not explicitly yield the intrinsic properties of the camera. The a�ne method has several
advantages, however | it works well even with skew between image rows and columns or
between image plane and optical axis, it works with either pixel coordinates or real image
coordinates, and the solution can be quickly computed without iteration. In section 13.7,
we will introduce a di�erent calibration method that uses more constraints and overcomes
some of the problems mentioned.

Exercise 21 Calibrate your home camera

If you don't have a simple �lm camera, borrow one or buy a cheap disposable one. Obtain
a rigid box to use as a jig: draw a few 'X's on each face. Measure the [x,y,z] coordinates
of each corner and each 'X' relative to a RH coordinate system with origin at one corner of
the box and axes along its edges. Take and develop a picture of the box. Identify and mark
15 corners and 'X's in the picture. Measure the coordinates of these points in inches using
a rule. Following the example of this section, derive the camera matrix and residuals and
report on these results. Check how well the camera matrix works for some points that were
not used in deriving it. Repeat the experiment using mm units for the picture coordinates.
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Exercise 22 \Texture map" your box

\Texture map" your picture onto the box of the previous exercise. (a) First, create a .pgm
image �le of your box as above. (b) Using the methods of Chapter 11, create a mapping
from one face of the box (in 2D coordinates) to an image array containing your own picture.
(c) Update the .pgm image �le of your box by writing pixels from your picture into it. Hint:
mapping two triangles rather than one parallelogram will produce a better result. Why?
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Figure 13.19: (Left) Potatoes illuminated by a slide containing a grid of lines. (Right)
Structured light concept: if the imaging system can deduce which ray GPlm created a
certain bright feature imaged at IPuv, then four equations are available to solve for 3D
surface point WPlm. Camera and projector matrices must both be available.

13.5 Using Structured Light

Sensing via structured light was motivated in the �rst section and illustrated in Figure 13.4.
We now have all the mathematical tools to implement it. Figure 13.19 gives a more detailed
view. Object surfaces are illuminated by a pattern of light: in this case a slide projector
projects a regular grid of bright lines on surfaces. The camera then senses the result as a
grid distorted by the surface structure and its pose. Since the grid of light is highly struc-
tured, the imaging system has strong information about which projector rays created the
intersections that it sensed. Assume for the moment that the imaging system knows that
grid intersect GPlm is imaged at IPuv. There are then four linear equations to use to solve
for the 3D surface point WPlm being illuminated by the special light pattern. We must have
both the camera calibration matrixC and the projector calibration matrixD. The solution
of the system DWPlm =G Plm and CWPlm =I Puv is the same as previously given for the
general case of two camera stereo in Section 13.3.3.

A projector can be calibrated in much the same way as a camera. The projector is
turned on so that it illuminates the planer surface of the worktable. Precise blocks are lo-
cated on the table so that one corner exactly intercepts one of the projected grid intersects.
A calibration tuple < [GPl;

GPm]; [
WPx;

W Py;
W Pz] > is obtained, where GPl;

GPm are the
ordinals (integers) of the grid lines de�ning the intersection and WPx;

W Py;
W Pz are the
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Compute mesh of 3D points from image of scene with light stripes.

O�ine Procedure:

1. Calibrate the camera to obtain camera matrix C.

2. Calibrate the projector to obtain projector matrix D.

Online Procedure:

1. Input camera and projector matrices C; D.

2. Input image of scene surface with light stripes.

3. Extract grid of bright stripes and intersections.

4. Determine the labels l;m of all grid intersections.

5. For each projected point Plm imaged at Puv compute 3D surface point P using C;D
and stereo equations.

6. Output mesh as a graph with vertices as 3D points and edges as their connections by
bright stripes.

Algorithm 2: Computing 3D surface coordinates using calibrated camera and projector.

measured world coordinates of the corner of the block. We note in passing that by using
the a�ne calibration procedure above, we can simply order the grid lines of the slide as
m = 1; 2; � � � or l = 1; 2; � � � because the procedure can adapt to any scale factor.

Exercise 23

Create and calibrate a structured light projector in the followingmanner. Using your favorite
image editing tool, create a digital image of a bright grid on a dark background; or, draw a
pattern on paper and digitize it on a scanner. Connect a laptop to a projector and display
your digital image; this should project your grid into space. Pose the projector so that it
illuminates a tabletop workspace. Place precise blocks on the table to obtain calibration
points and perform the a�ne calibration procedure. Report on the results.

The correspondence problem is still present as in two-camera stereo, although not quite
as severe. Referring to the image of the potatoes, it is clear that there is a problem for
the imaging system to determine the exact grid intersections seen. If only surface shape is
needed and not location, it usually only matters that grid intersections are identi�ed con-
sistently relative to each other. See Figure 13.20 and the references by Hu and Stockman
and by Shrikhande and Stockman (1989). Various engineering solutions have been imple-
mented; for example, coding grid lines using variations of shape or color. Another solution
is to change the grid pattern rapidly over time with the imaging system taking multiple
images from which grid patterns can be uniquely determined. White light projectors have
a limted depth-of-�eld where the grid pattern is sharp. Laser light projectors do not su�er
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Figure 13.20: Surface normals computed using a projected grid: normals can be computed
by assuming the grid lines are in sequence but exact grid lines are not needed. (Weak
perspective models were used for both projector and camera.) See Shrikhande 1999.

from this limitation but the re
ection o� certain objects will be poor due to the low power
and limited spectrum of a typical laser. In many controlled sensing environments structured
light sensors are highly e�ective. O�-the-shelf sensor units can be purchased from several
companies; some may have only one ray, one stripe, or perhaps two orthogonal stripes.

13.6 A Simple Pose Estimation Procedure

We want to use cameras to compute object geometry and pose. In this section we study a
simple method of computing the pose of an object from three points of the image of that
object. It is assumed that a geometric model of the object is known and that the focal
length f of the camera is known. We study this simple method because it not only gives
a practical means of computing pose, but because it also introduces some important con-
cepts in a simple context. One of these is the idea of inverse perspective | computing 3D
properties from properties in the 2D image plane of a perspective transformation. Another
is the idea of using optimization to �nd a best set of parameters that will match 3D object
points to 2D image points. Our most important simplifying assumption is that the world
coordinate system is the same as the camera coordinate system, so we omit superscripts of
points because they are not needed to indicate coordinate system (WPj = CPj � Pj).
Another simpli�cation is that we will work only in real geometrical space | we use no image
quantization, or pixel coordinates.

The environment for the Perspective 3 Point Problem (P3P) is shown in Figure 13.21.
Three 3D scene points Pi are observed in the u-v image plane as Qi. The coordinates
of the points Pi are the unknowns for which we want to solve. Since we assume that we
know what points of an object model we are observing (a big assumption), we do know
the distances between pairs of points: for a rigid object, these three distances do not vary
as the object moves in space. In an application of human-computer interaction (HCI),
the points Pi could be facial features of a speci�c person, such as the eyes and tip of the
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Figure 13.21: A simple case for pose estimation: a triangle P1P2P3 with sides of known
length in 3D is observed in the u-v image plane as triangle Q1Q2Q3. The 3D positions
of points Pj can be computed from the observed image points Qj. The pose of an object
containing the Pj can then be determined relative to the camera coordinate system. The
focal length f is the distance from the center of projection to the image plane. Coordinates
of the image points are Qj = [uj; vj;�f ] relative to the camera coordinate system C.

nose. The face can be measured for the required distances. Computing the pose of the face
will reveal where the person is looking. In a navigation application, the three points Pi
could be geographic landmarks whose locations are known in a map. A navigating robot
or drone can compute its own position relative to the landmarks using the followingmethod.

The image locations of the observed points Qi are known. Let qi be the unit vector from
the origin in the direction of Qi. The 3D point Pi is also in this same direction. Therefore,
we can solve for the locations of Pi from Qi if we can compute the three scalars ai such that

Pi = ai qi (13.36)

From the three equations represented in Equation 13.36 we derive three others relating
the distances between points, which are known from the model.

dmn = kPm � Pnk (m 6= n) (13.37)

We rewrite the Pi in terms of the observed Qi and compute the 3D distances, using the
dot product and the fact that qi � qi = 1.

dmn
2 = kamqm � anqnk2 (13.38)

= (amqm � anqn) � (amqm � anqn)

= am
2 � 2aman(qm � qn) + an

2

We now have three quadratic equations in the three unknowns ai. The three left sides
dmn

2 are known from the model and the three qm � qn are known from the image points
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Qi. Our P3P problem of computing the positions of the three points Pi is now reduced to
solving three quadratic equations in three unknowns. In theory, there can be 8 di�erent
triples [a1; a2; a3] that will satisfy Equations 13.38. Extending Figure 13.21, it is easy to see
that for each pose of the three points on one side of the coordinate system, there is a mirror
set on the other side with parameters [�a1;�a2;�a3], and clearly if one triple sati�es the
equations, then so must the other. Thus, we can have at most four actual poses possible
in a real situation because the object must be on one side of the camera. In Fischler and
Bolles (1981) it is shown that four poses are possible in special cases; however, the common
case is for two solutions.

We now show how to solve for the unknowns ai (and hence Pi) using nonlinear optimiza-
tion. This will give insight to other optimizations used in later sections. Mathematically,
we want to �nd three roots of the following functions of the ai.

f(a1; a2; a3) = a1
2 � 2a1a2(q1 � q2) + a2

2 � d12
2

g(a1; a2; a3) = a2
2 � 2a2a3(q2 � q3) + a3

2 � d23
2

h(a1; a2; a3) = a1
2 � 2a1a3(q1 � q3) + a3

2 � d13
2 (13.39)

Suppose that we are near a root [a1; a2; a3] but that f(a1; a2; a3) 6= 0. We want to
compute some changes [�1;�2;�3] so that, ideally, f(a1 +�1; a2 +�2; a3 +�3) = 0, and
in reality, it moves toward 0. We can linearize f in the neighborhood of [a1; a2; a3] and then
compute the changes [�1;�2;�3] needed to produce 0.

f(a1 +�1; a2 +�2; a3 +�3) = f(a1; a2; a3) +
h

@f
@a1

@f
@a2

@f
@a3

i24 �1

�2

�3

3
5+ h:o:t: (13.40)

By ignoring the higher order terms in Equation 13.40 and setting the left side to zero,
we obtain one linear equation in the unknowns [�1;�2;�3]. Using the same concept for

the functions g and h, we arrive at the following matrix equation.

2
4 0

0
0

3
5 =

2
4 f(a1; a2; a3)

g(a1; a2; a3)
h(a1; a2; a3)

3
5 +

2
64

@f
@a1

@f
@a2

@f
@a3

@g
@a1

@g
@a2

@g
@a3

@h
@a1

@h
@a2

@h
@a3

3
75
2
4 �1

�2

�3

3
5 (13.41)

The matrix of partial derivatives is the Jacobian matrix J: if it is invertible at the
point [a1; a2; a3] of our search then we obtain the following solution for the changes to these
parameters.

2
4 �1

�2

�3

3
5 = �J�1(a1; a2; a3)

2
4 f(a1; a2; a3)

g(a1; a2; a3)
h(a1; a2; a3)

3
5 (13.42)

We can compute a new vector of parameters by adding these changes to the previous
parameters. We use Ak to denote the parameters [a1; a2; a3] at the k-th iteration and arrive
at a familiar form of Newton's method. f represents the vector of values computed using
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functions f; g; and h.

Ak+1 = Ak � J�1(Ak)f (Ak) (13.43)

Exercise 24 de�ning the Jacobian

Show that the Jacobian for the function f (a1; a2; a3) is as follows, where tmn denotes the
dot product qm � qn.

J(a1; a2; a3) �

2
4 J11 J12 J13

J21 J22 J23
J31 J32 J33

3
5

=

2
4 (2a1 � 2t12a2) (2a2 � 2t12a1) 0

0 (2a2 � 2t23a3) (2a3 � 2t23a2)
(2a1 � 2t31a3) 0 (2a3 � 2t31a1)

3
5

Exercise 25 computing the inverse of the Jacobian

Using the symbols Jij from the previous exercise, derive a representation for the inverse
Jacobian J�1.

Algorithm 3 summarizes the method for computing the positions of the three 3D model
points in terms of the camera coordinate system. Experience has shown that the algorithm
converges within 5 to 10 iterations under typical situations. However, it is not clear how to
control the algorithm so that multiple solutions can be obtained. Nonlinear optimization
is sometimes as much art as algorithm and the reader should consult the references for its
many nuances. Table 13.3 shows critical data during the iterations of a P3P solution. Sim-
ulated Pi were projected using focal length f = 30 to obtain simulated image coordinates
Qi. Beginning parameters were set well away from the true values. After taking some crude
steps, the algorithm homes into the neighborhood of the true solution and outputs the same
Pi as input, accurate to within two decimal places. As shown in columns 3-5 of Table 13.3,
after the 9-th iteration, the di�erence between the model side length and the computed side
length is less than 0.2 units. Starting with each ai � 100 halves the number of iterations.
If the stando� of an object from the camera is approximately known, then this is a good
starting value for each parameter.

Ohmura et al (1988) built a system that could compute the position of a person's head
10 times per second. For the model feature points MPj, blue dots were placed on the face
just left of the left eye, just right of the right eye, and just under the nose. (These points
will not deform much with various facial expressions.) With the blue makeup the image
points FQj could be detected rapidly and robustly. The pose of the face could then be

de�ned by the computed points CPj and the transformation mapping the MPj to the
CPj

(using Algorithm 1). Ballard and Stockman (1995) developed a system that located the
eyes and nose on a face without any makeup, but performance was much slower due to the
processing needed to identify the eyes and nose. Both groups reported that the error in the
normal vector of the plane formed by the three points is of the order of a few degrees. If
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Compute the position of 3 3D points in space from 3 image points.

Input three pairs (MPi;
F Qi) of corresponding points from 3D and 2D.

Each MPi is in model coordinates; FQi is in real image coordinates.
Input the focal length f of camera and tolerance � on distance.
Output the positions CPi of the three model points relative to the camera.

1. initialize:

(a) From model points MPi compute squared distances dmn
2

(b) From image points FQi compute unit vectors qi and dot products 2qm � qn

(c) Choose a starting parameter vector A1 = [a1; a2; a3] (How?)

2. iterate: until f (Ak) � 0

(a) Ak+1 = Ak � J�1(Ak)f (Ak)

i. Ak = Ak+1

ii. compute J�1(Ak) if J�1 exists

iii. evaluate f (Ak) = [f(ak1 ; a
k
2; a

k
3); g(a

k
1; a

k
2; a

k
3); h(a

k
1; a

k
2; a

k
3)]

t

(b) stop when f (Ak+1) is within error tolerance � of 0
or stop if number of iterations exceeds limit

3. compute pose: From Ak+1 compute each CPi = ai
k+1qi

Algorithm 3: Iterative P3P Solution
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Table 13.3: Iterations of P3P solution. Using focal length f = 30, simulated im-
age coordinates Qj were computed from projecting P1 = [�19:05;�30:16; 76:20]; P2 =
[�19:05;�7:94;88:90]; P3 = [0:00;�7:94;88:90]. Beginning parameters were set to
A0 = [300; 300; 300] and � = 0:2. In nine iterations the P3P program converged to
the initial Pj accurate to two decimal places.

It. k jf(Ak
)j jg(Ak

)j jh(Ak
)j a1 a2 a3

1 6.43e+03 3.60e+03 1.09e+04 1.63e+02 1.65e+02 1.63e+02

2 1.46e+03 8.22e+02 2.48e+03 1.06e+02 1.08e+02 1.04e+02

3 2.53e+02 1.51e+02 4.44e+02 8.19e+01 9.64e+01 1.03e+02

... ... ...

8 2.68e+00 6.45e-01 5.78e+00 8.414e+01 9.127e+01 8.926e+01

9 5.00e-02 3.87e-02 1.71e-01 8.414e+01 9.126e+01 8.925e+01

It. k P1x P1y P1z P2x P2y P2z P3x P3y P3z

1 -36.9 -58.4 147.6 -34.4 -14.4 160.7 0.0 -14.5 162.4

2 -24.0 -38.0 96.0 -22.5 -9.3 105.2 0.0 -9.3 103.6

... ... ... ...

8 -19.1 -30.2 76.2 -19.1 -7.9 88.9 0.0 -7.9 88.9

9 -19.1 -30.2 76.2 -19.1 -7.9 88.9 0.0 -7.9 88.9

the plane of the three points CPj is nearly normal to the image plane, then small errors in
the observed image coordinates FQj can produce large errors in the computed orientation
of the plane in 3D. In order to counter this e�ect, Ohmura et al oriented the camera axis
about 20 degrees o� to the side of the general direction of the face.

Equations 13.38 should always have a solution; thus we can compute the pose of an
airplane from three points in the image of a frog! Choosing a good candidate model is im-
portant: this might be done by knowing that airplanes are not green or cannot be present,
etc. Veri�cation of a model is also important: this can be done by projecting more ob-
ject model points and verifying them in the image. For example, to distinguish between
two possible poses of a face, we might look for an ear, chin, and eyebrow after comput-
ing pose from the eyes and nose. We examine veri�cation more in the following sections.
Also, we will take into consideration that digital image points are identi�ed in pixel coordi-
nates and that radial lens distortion must be modeled along with the perspective projection.

Exercise 26

Discuss how the P5P problem can be solved using the P3P solution procedure.

13.7 * An Improved Camera Calibration Method

We now describe a calibrationmethod, developed by Roger Tsai (1987), that has been widely
used in industrial vision applications. It has been reported that with careful implementation
this procedure can support 3D measurements with a precision of 1 part in 4000, which is
quite good. Since the general idea of calibration has been carefully developed in Section 13.3,



36 Computer Vision: Mar 2000

Exercise 27 * WP3P problem

Acquire a copy of the 1988 paper by Huttenlocher and Ullman, which describes a solution
for computing the pose of a rigid con�guration of three points from a single weak perspective
projection. The solution method is closed form and explicitly produces two solutions, unlike
the P3P solution in this chapter. Program the solution method and test it on simulated
data obtained by mathematically projecting 3-point con�gurations to obtain your three
correspondences < Pj; Qj >.

we proceed with a simpler notation.

� P = [x; y; z] is a point in the 3D world coordinate system.

� p = [u; v] is a point in the real image plane. (One can think of the u axis as horizontal
and pointing to the right and the v axis as vertical and pointing upward.)

� a = [r; c] is a pixel in the image array expressed by two integers; r is the row coordinate
and c is the column coordinate of the pixel. (Relative to convention for u and v above,
the r axis is vertical and points downward. The c axis is horizontal and points to the
right.)

Camera calibration is conceived to be parameter recovery; we are solving for the \camera
parameters" that characterize camera geometry and pose. There are two di�erent types of
parameters to be recovered:

1. intrinsic parameters

2. extrinsic parameters

13.7.1 Intrinsic Camera Parameters

The intrinsic parameters are truly camera parameters, as they depend on the particular
device being used. They include the following parameters:

� principal point [u0; v0]: the intersection of the optical axis with the image plane.

� scale factors fdx; dyg for the x and y pixel dimensions.

� aspect distortion factor �1: a scale factor used to model distortion in the aspect ratio
of the camera.

� focal length f : the distance from the optical center to the image plane.

� lens distortion factor (�1): a scale factor used to model radial lens distortion.

These de�nitions refer to the optical center of the camera lens. The camera origin is at this
point. The optical axis is the perpendicular to the image plane going through the optical
center. The principal point is often, but not always, in the center pixel of the image. The
scale factors dx and dy represent the horizontal size and vertical size of a single pixel in
real world units, such as millimeters. We will assume that u0, v0, dx, dy, and the aspect
distortion factor �1 are known for a particular camera. Thus only the focal length f and
the lens distortion factor �1 will be computed during the calibration process.
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Figure 13.22: A calibration object that uses a moving 2D pattern to create many feature
points in 3D space.

13.7.2 Extrinsic Camera Parameters

The extrinsic parameters describe the position and orientation (pose) of the camera system
in the 3D world. They include:

� translation:

t = [tx ty tz]
T (13.44)

� rotation:

R =

2
664

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

3
775 (13.45)

The translation parameters describe the position of the camera in the world coordinate sys-
tem, and the rotation parameters describe its orientation. We emphasize at the outset that
there are only three independent rotation parameters and not nine.

The calibration method developed below is autonomous, reasonably accurate, e�cient,
and 
exible (see Tsai (1987)). Furthermore, it can be used with any o�-the-shelf camera
and lens, although it may not perfectly model the speci�c lens chosen. Figure 13.22 shows
a calibration object, which was also used in a 3D object reconstruction system to be dis-
cussed below. The device is a metal plate onto which have been painted a 7 � 7 array of
black circles. The centers of the circles are used as the distinguished points. The object is
mounted on a horizontal rail. It is perpendicular to the rail and can be moved along it in
10mm steps. The position of the rail de�nes the 3D world coordinate system.
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Figure 13.23: The geometric model for the Tsai calibration procedure. Point pi = [ui; vi] on
the image corresponds to point Pi = [xi; yi; zi] on the calibration object. Point p0 = [u0; v0]
is the principal point. Any radial distortion must displace image point pi along direction
p0 � pi in the image.

In the system shown in Figure 13.22, several images are taken at di�erent positions
along the rail corresponding to di�erent distances from the camera. The camera must not
be moved nor focused during the time it is being calibrated or used. In each image, the
circles are detected and their centers computed. The result of the image processing is a set
of correspondences between known points in the 3D world and corresponding points in the
2D images. n > 5 correspondences are required; we refer to them as

f( [xi; yi; zi]; [ui; vi] ) j i = 1; : : : ; ng:
The real-valued image coordinates [u; v] are computed from their pixel position [r; c] by the
formulas

u = �1dx(c � u0) (13.46)

v = �dy(r � v0) (13.47)

where dx and dy are the center-to-center distances between pixels in the horizontal and
vertical directions, and �1 is the scale factor for distortions in the aspect ratio of the camera.

Figure 13.23 illustrates the geometry assumed by the procedure. The point Pi =
[xi; yi; zi] is an arbitrary point in the 3D world. The corresponding point on the image
plane is labeled pi. Vector ri is from the point [0; 0; zi] on the optical axis to the 3D point
Pi. Vector si is from the principal point p0 to the image point pi. Vector si is parallel to
vector ri. Any radial distortion due to the lens is along si.

Tsai made the following observation, which allows most of the extrinsic parameters to be
computed in a �rst step. Since the radial distortion is along vector si, the rotation matrix
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can be determined without considering it. Also, tx and ty can be computed without knowing
�1. Computation of tz must be done in a second step since change in tz has an image e�ect
similar to �1.

Instead of directly solving for all unknowns, we �rst solve for a set � of computed param-
eters fromwhich the extrinsic parameters can be derived. Given the n point correspondences
between [xi; yi; zi] and [ui; vi] for i = 1 to n, n > 5, a matrix A is formed with rows ai;

ai = [vixi; viyi; �uixi; �uiyi; vi]: (13.48)

Let � = [�1; �2; �3; �4; �5] be a vector of unknown (computed) parameters de�ned with
respect to the rotation parameters r11, r12, r21, and r22 and the translation parameters tx
and ty as:

�1 =
r11

ty
(13.49)

�2 =
r12

ty
(13.50)

�3 =
r21

ty
(13.51)

�4 =
r22

ty
(13.52)

�5 =
tx

ty
(13.53)

Let the vector b = [u1; u2; : : : ; un] contain the ui image coordinates of the n correspon-
dences. Since A and b are known, the system of linear equations

A� = b (13.54)

can be solved for the unknown parameter vector �. (See Introduction to Linear Algebra, 2nd
edition by Johnson, Riess, and Arnold for techniques on solving linear systems of equations.)
Now � can be used to compute the rotation and translation parameters as follows.

1. Let U = �21+ �22+ �23+ �24. Calculate the square of the y component of translation ty
as:

t2y =

8>>>>><
>>>>>:

U�[U2�4(�1�4��2�3)2]1=2
2(�1�4��2�3)2 if (�1�4 � �2�3) 6= 0

1
�2
1
+�2

2

if (�21 + �22) 6= 0

1
�2
3
+�2

4

if (�23 + �24) 6= 0

(13.55)

2. Let ty = (t2y)
1=2 (the positive square root) and compute four of the rotation parameters

and the x-translation tx from the known computed value of �:

r11 = �1ty (13.56)
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r12 = �2ty (13.57)

r21 = �3ty (13.58)

r22 = �4ty (13.59)

tx = �5ty (13.60)

3. To determine the true sign of ty, select an object point P whose image coordinates
[u; v] are far from the image center (to avoid numerical problems). Let P = [x; y; z],
and compute

�x = r11x+ r12y + tx (13.61)

�y = r21x+ r22y + ty (13.62)

This is like applying the computed rotation parameters to the x and y coordinates of
P. If �x has the same sign as u and �y has the same sign as v, then ty already has the
correct sign, else negate it.

4. Now the remaining rotation parameters can be computed as follows:

r13 = (1� r211 � r212)
1=2 (13.63)

r23 = (1� r221 � r222)
1=2 (13.64)

r31 =
1� r211 � r12r21

r13
(13.65)

r32 =
1� r21r12 � r222

r23
(13.66)

r33 = (1� r31r13 � r32r23)
1=2 (13.67)

The orthonormality constraints of the rotation matrix R have been used in deriving
these equations. The signs of r23, r31, and r32 may not be correct due to the ambiguity
of the square root operation. At this step, r23 should be negated if the sign of

r11r21 + r12r22

is positive, so that the orthogonality of the rotation matrix is preserved. The other
two may need to be adjusted after computing the focal length.

5. The focal length f and the z component of translation tz are now computed from a
second system of linear equations. First a matrix A0 is formed whose rows are given
by

a0i = (r21xi + r22yi + ty; vi) (13.68)

where dy is the center-to-center distance between pixels in the y direction.

Next a vector b0 is constructed with rows de�ned by

b0i = (r31xi + r32yi)vi: (13.69)

We solve the linear system
A0v = b0 (13.70)

for v = (f; tz)
T . We obtain only estimates for f and tz at this point.
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6. If f < 0 then change the signs of r13, r23, r31, r32, f , and tz. This is to force the use
of a right-handed coordinate system.

7. The estimates for f and tz can be used to compute the lens distortion factor �1 and
to derive improved values for f and tz. The simple distortion model used here is that
the true image coordinates [û; v̂] are obtained from the measured ones by the following
equations:

û = u(1 + �1r
2) (13.71)

v̂ = v(1 + �1r
2) (13.72)

where the radius of distortion r is given by

r = (u2 + v2))1=2 (13.73)

Using the perspective projection equations, modi�ed to include the distortion, we
derive a set of nonlinear equations of the form

�
vi(1 + �1r

2) = f
r21xi + r22yi + r23zi + ty

r31xi + r32yi + r33zi + tz

�
i = 1; : : : ; n (13.74)

Solving this system by nonlinear regression gives the values for f , tz , and �1.

13.7.3 Calibration Example

To see how this camera calibration procedure works, we will go through an example. The
following table gives �ve point correspondences input to the calibration system. The units
for both the world coordinate system and the u-v image coordinate system are centimeters.

i xi yi zi ui vi
1 0.00 5.00 0.00 -0.58 0.00

2 10.00 7.50 0.00 1.73 1.00

3 10.00 5.00 0.00 1.73 0.00

4 5.00 10.00 0.00 0.00 1.00

5 5.00 0.00 0.00 0.00 -1.00

Figure 13.24 shows the �ve calibration points in the 3D world and approximately how
they will look on the image plane as viewed by the camera, whose position, orientation, and
focal length are unknown and to be computed. Figure 13.25 shows the image points in the
continuous u-v coordinate system.

Using the �ve correspondences, the matrix A and vector b of equation 13.54 are given
by
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Figure 13.24: The 3D world points and corresponding 2D image points that are input to
the calibration procedure, which will compute the camera parameters including position,
orientation, and focal length.

vixi viyi �uixi �uiyi vi

A =

2
66664

0:00 0:00 0:00 2:89 0:00
10:00 7:50 �17:32 �12:99 1:00
0:00 0:00 �17:32 �8:66 0:00
5:00 10:00 0:00 0:00 1:00

�5:00 0:00 0:00 0:00 �1:00

3
77775

and ui

b =

2
66664

�:58
1:73
1:73
0:00
0:00

3
77775

Solving Au = b yields the vector u given by

�i

u =

2
66664

�0:17
0:00
0:00

�0:20
0:87

3
77775



Shapiro and Stockman 43

-1-3

8.0 cm

4.0
cm

-2-4

2

-2

0

1

4321

principal  point

v

u

p4
p2

p3

p5

p1

Image

Figure 13.25: The image points in the u-v image coordinate system.

The next step is to calculate U and use it to solve for t2y in equation 13.55. We have

U = �21 + �22 + �23 + �24 = :07

Using the �rst formula in 13.55, we have

t2y =
U � [U2 � 4(�1�4 � �2�3)

2]1=2

2(�1�4 � �2�3)2
= 25

When ty is set to the positive square root (5), we have

r11 = �1ty = �:87
r12 = �2ty = 0

r21 = �3ty = 0

r22 = �4ty = �1:0
tx = �5ty = 4:33

Next we compute �x and �y for the point P2 = (10.0,7.5,0.0) and corresponding image
point p2 = (1.73,1.0), which is far from the image center, to check the sign of ty.

�x = r11x+ r12y + tx = (�:87)(10) + 0 + 4:33 = �4:33
�y = r21x+ r22y + ty = 0 + (�1:0)(7:5) + 5 = �2:5

Since the signs of �x and �y do not agree with those of p2, the sign of ty is wrong, and
it is negated. This gives us
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ty = �5
r11 = :87

r12 = 0

r21 = 0

r22 = 1:0

tx = �4:33

Continuing, we compute the remaining rotation parameters:

r13 = (1� r211 � r212)
1=2 = 0:5

r23 = (1� r221 � r222)
1=2 = 0:

r31 =
1� r211 � r12r21

r13
= 0:5

r32 =
1� r21r12 � r222

r23
= 0:

r33 = (1� r31r13 � r32r23)
1=2 = :87

Checking the sign of r11r21 + r12r22 = 0 shows that it is not positive, and therefore, r23
does not need to change.

We now form the second system of linear equations as follows.

r21xi+
r22yi + ty vi

A0 =

2
66664

0:00 0:00
2:500 �1:00
0:00 0:00
5:00 �1:00

�5:00 1:00

3
77775

and

(r31xi + r32yi)vi

b0 =

2
66664

0:0
5:0
0:0
2:5

�2:5

3
77775

Solving A0v = b0 yields the vector v = [f; tz] given by

f = �1:0
tz = �7:5



Shapiro and Stockman 45

Since f is negative, our coordinate system is not right-handed. To 
ip the z-axis, we
negate r13, r23, r31, r32, f , and tz . The results are:

R =

2
4 0:87 0:00 �0:50

0:00 �1:00 0:00
�0:50 0:00 0:87

3
5

and

T =

2
4 �4:33
�5:00
7:50

3
5

and f = 1.

Since our example includes no distortion, these are the �nal results of the calibration
procedure. Figure 13.26 illustrates the results of the calibration procedure shown from two
di�erent views.

Exercise 28

Verify that the rotation matrix R derived in the above example is orthonormal.

Exercise 29 Using camera parameter f

Using 3D Euclidean geometry and Figure 13.26a, �nd the projection of P1 and P3 on the
image plane. (All the lines in Figure 13.26a are coplanar.) Verify that the results agree with
the image coordinates p1 and p3 given in the example.

Exercise 30 Using camera parameters R and T

P1 and P3 in the example were given in the world coordinate system. Find their coordinates
in the camera coordinate system

1. using Euclidean geometry and Figure 13.26a.

2. using the camera parameters determined by the calibration procedure.

13.8 * Pose Estimation

In industrial vision, especially for robot guidance tasks, it is important to obtain the pose
of a 3D object in workspace coordinates. Since the pose of the camera in the workspace
can be computed by calibration, the problem is reduced to that of determining the pose
of the object with respect to the camera. The method for determining object pose given
in this section should have accuracy superior to the simple method given in a previous
section. Using point-correspondences is the most basic and most-often-used method for
pose computation. For use of correspondences between 2D and 3D line segments, between
2D ellipses and 3D circles, and between any combination of point pairs, line-segment pairs,
and ellipse-circle pairs, see the work of Ji and Costa (1998).



46 Computer Vision: Mar 2000

a) top view (the thick black line is the image plane)

b) perspective view

Figure 13.26: Two views of the camera and image plane in the world coordinate system as
computed in the example via the Tsai calibration procedure.
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13.8.1 Pose from 2D-3D Point Correspondences

The camera model of the previous section is used, and we assume that the camera has been
calibrated to obtain the intrinsic and extrinsic parameters. The problem of determining
object pose from n point correspondences between 3D model object points and 2D image
points is inherently a non-linear one. Non-linear methods for estimating the pose parameters
are necessary; however, under some conditions, an approximate, linear solution can be found.

Let [x; y; z] be the coordinates of object pointMP in its model coordinate system. Let the
object coordinate system and the camera coordinate system be related by a transformation
C
MTr = fR;Tg, described in the form of a rotation matrix R and a translation vector
T = [tx; ty; tz]. Then, the perspective projection of MP onto the image plane yields image
plane coordinates [u; v], where

u = f
r11x+ r12y + r13z + tx

r31x+ r32y + r33z + tz
(13.75)

and

v = f
r21x+ r22y + r23z + ty

r31x+ r32y + r33z + tz
(13.76)

and f is the focal length of the camera, which is now known.

The transformation between object model frame and camera frame corresponds to the
pose of the object with respect to the camera frame. Using our perspective imaging model
as before, we have nine rotation parameters and three translation parameters involved in 12
equations of the following form.

B w = 0 (13.77)

where

B =

0
BBBBBBBB@

fx1 fy1 fz1 0 0 0 �u1x1 �u1y1 �u1z1 f 0 �u1
0 0 0 fx1 fy1 fz1 �v1x1 �v1y1 �v1z1 0 f �v1
fx2 fy2 fz2 0 0 0 �u2x2 �u2y2 �u2z2 f 0 �u2
0 0 0 fx2 fy2 fz2 �v2x2 �v2y2 �v2z2 0 f �v2
...

...
...

...
...

...
...

...
...

...
...

...
fx6 fy6 fz6 0 0 0 �u6x6 �u6y6 �u6z6 f 0 �u6
0 0 0 fx6 fy6 fz6 �v6x6 �v6y6 �v6z6 0 f �v6

1
CCCCCCCCA
(13.78)

and

w = ( r11 r12 r13 r21 r22 r23 r31 r32 r33 tx ty tz )
T
: (13.79)

However, if one is interested in �nding independent pose parameters, and not simply
an a�ne transformation that aligns the projected model points with the image points,
conditions need to be imposed on the elements of R such that it satis�es all the criteria a true
3D rotation matrix must satisfy. In particular, a rotation matrix needs to be orthonormal:
its row vectors must have magnitude equal to one, and they must be orthogonal to each
other. This can be written as:
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kR1k = r211 + r212 + r213 = 1 (13.80)

kR2k = r221 + r222 + r223 = 1

kR3k = r231 + r232 + r233 = 1

and

R1 �R2 = 0 (13.81)

R1 �R3 = 0

R2 �R3 = 0

The conditions imposed on R turn the problem into a non-linear one. If the conditions
on the magnitudes of the row vectors of R are imposed one at a time, and computed
independently, a linear constrained optimization technique can be used to compute the
constrained row vector of R. (See the Faugeras 1993 reference for a similar procedure.)

13.8.2 Constrained Linear Optimization

Given the system of equations 13.77, the problem at hand is to �nd the solution vector
w that minimizes kBwk subject to the constraint kw0k2 = 1, where w0 is a subset of the
elements of w. If the constraint is to be imposed on the �rst row vector of R, then

w0 =

0
@ r11
r12
r13

1
A :

To solve the above problem, it is necessary to rewrite the original system of equations
Bw = 0 in the following form

Cw0 +Dw00 = 0;

where w00 is a vector with the remaining elements of w. Using the example above, i.e., if
the constraint is imposed on the �rst row of R,

w00 = ( r21 r22 r23 r31 r32 r33 tx ty tz )
T
:

The original problem can be stated as: minimize the objective functionO = Cw0 +Dw00,
that is

min
w0;w00

kCw0 +Dw00k2 (13.82)

subject to the constraint kw0k2 = 1. Using a Lagrange multiplier technique, the above is
equivalent to

min
w0;w00

h
kCw0 +Dw00k2 + �(1 � kw0k2)

i
: (13.83)

The minimization problem above can be solved by taking partial derivatives of the objective
function with respect to w0 and w00 and equating them to zero:
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@O

@w0 = 2CT(Cw0 +Dw00)� 2�w0 = 0 (13.84)

@O

@w00 = 2DT(Cw0 +Dw00) = 0 (13.85)

Equation 13.85 is equivalent to

w00 = �(DTD)�1DTCw0: (13.86)

Substituting equation 13.86 into equation 13.84 yields

�w0 = [CTC �CTD(DTD)�1DTC]w0: (13.87)

It can be seen that � is an eigenvector of the matrix

M = CTC�CTD(DTD)�1DTC: (13.88)

Therefore, the solution sought for w0 corresponds to the smallest eigenvector associated
with matrix M. The corresponding w00 can be directly computed from equation 13.86.
It is important to notice that since the magnitude constraint was imposed only on one of
the rows of R, the results obtained for w00 are not reliable and therefore should not be
used. However, solution vector w00 provides an important piece of information regarding
the sign of the row vector on which the constraint was imposed. The constraint imposed was
kw0k2 = 1, but the sign of w0 is not restricted by this constraint. Therefore, it is necessary
to check whether or not the resulting w0 yields a solution that is physically possible. In
particular, the translation tz must be positive in order for the object to be located in front
of the camera as opposed to behind it. If the element of vector w00 that corresponds to tz
is negative, it means that the magnitude of the computed w0 is correct, but its sign is not
and must be changed. Thus, the �nal expression for the computed w0 is

w0 = sign(w009 )w
0: (13.89)

13.8.3 Computing the Transformation Tr = fR;Tg

Row vector R1 is computed �rst by computing w0 as described above, since in this case
R1 = w0. Matrices C and D are

C =

0
BBBBBBBB@

x1 y1 z1
0 0 0
x2 y2 z2
0 0 0
...

...
...

x6 y6 z6
0 0 0

1
CCCCCCCCA

(13.90)

and
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D =

0
BBBBBBBB@

0 0 0 �u1x1 �u1y1 �u1z1 f 0 �u1
fx1 fy1 fz1 �v1x1 �v1y1 �v1z1 0 f �v1
0 0 0 �u2x2 �u2y2 �u2z2 0 f �u2
fx2 fy2 fz2 �v2x2 �v2y2 �v2z2 0 f �v2
...

...
...

...
...

...
...

...
...

0 0 0 �u6x6 �u6y6 �u6z6 f 0 �u6
fx6 fy6 fz6 �v6x6 �v6y6 �v6z6 0 f �v6

1
CCCCCCCCA
: (13.91)

Then row vector R2 is computed using the same technique, except that now the constraint
is imposed on its magnitude, thus R2 = w0. In this case, matrices C and D are

C =

0
BBBBBBBB@

0 0 0
fx1 fy1 fz1
0 0 0
fx2 fy2 fz2
...

...
...

0 0 0
fx6 fy6 fz6

1
CCCCCCCCA

(13.92)

and

D =

0
BBBBBBBB@

fx1 fy1 fz1 �u1x1 �u1y1 �u1z1 f 0 �u1
0 0 0 �v1x1 �v1y1 �v1z1 0 f �v1
fx2 fy2 fz2 �u2x2 �u2y2 �u2z2 f 0 �u2
0 0 0 �v2x2 �v2y2 �v2z2 0 f �v2
...

...
...

...
...

...
...

...
...

fx6 fy6 fz6 �u6x6 �u6y6 �u6z6 f 0 �u6
0 0 0 �v6x6 �v6y6 �v6z6 0 f �v6

1
CCCCCCCCA
: (13.93)

R3 could also be computed the same way asR1 andR2 above, but that would not guarantee
it to be normal to R1 and R2. Instead, R3 is computed as follows:

R3 =
R1 �R2

kR1 �R2k
: (13.94)

All the constraints on the row vectors of R have been satis�ed, except one: there is no
guarantee that R1 is orthogonal to R2. In order to solve this undesired situation, R1;R2,
and R3 need to go through an orthogonalization process, such that the rotation matrix R
is assured to be orthonormal. This can be accomplished by �xing R1 and R3 as computed
above and recomputing R2 as:

R2 = R3 �R1: (13.95)

This way, all the rotation parameters have been calculated and they all satisfy the
necessary constraints. The translation vector T is computed using a least squares technique
on a new, non-homogeneous, over-constrained system of twelve equations:

A t = b; (13.96)



Shapiro and Stockman 51

Figure 13.27: Examples of pose computed from six point correspondences using constrained
linear optimization.

where

A =

0
BBBBBBBB@

f 0 �u1
0 f �v1
f 0 �u2
0 f �v2
...

...
...

f 0 �u6
0 f �v6

1
CCCCCCCCA
; (13.97)

and

b =

0
BBBBBBBB@

�f(r11x1 + r12y1 + r13z1) + u1(r31x1 + r32y1 + r33z1)
�f(r21x1 + r22y1 + r23z1) + v1(r31x1 + r32y1 + r33z1)
�f(r11x2 + r12y2 + r13z2) + u1(r31x2 + r32y2 + r33z2)
�f(r21x2 + r22y2 + r23z2) + v1(r31x2 + r32y2 + r33z2)

...
�f(r11x6 + r12y6 + r13z6) + u1(r31x6 + r32y6 + r33z6)
�f(r21x6 + r22y6 + r23z6) + v1(r31x6 + r32y6 + r33z6)

1
CCCCCCCCA
: (13.98)

13.8.4 Veri�cation and Optimization of Pose

A quantitative measure is useful for evaluating the quality of the pose parameters. One
was already used in our development of the a�ne calibration procedure: it was the sum of
the squared distances between projected posed model points and their corresponding image
points. Some correspondences must be dropped as outliers, however, due to occlusions of
some object points by the same or by other objects. Other distance measures can be used;
for example, the Hausdorf or modi�ed Hausdorf distance. (See the references by Huten-
locher et al Dubuisson and Jain). Veri�cation can also be done using other features, such
as edges, corners, or holes.

A measure of pose quality can be used to improve the estimated pose parameters. Con-
ceptually, we can evaluate small variations of the parameters and keep only the best ones.
Brute force search of 10 variations of each of six rotation and translation parameters would
mean that one million sets of pose parameters would have to be evaluated | computational
e�ort that is not often done. A nonlinear optimization method, such as Newton's method or
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(a) Initial pose (b) Final pose

Figure 13.28: Example pose hypothesis and �nal pose after nonlinear optimization.

Powell's method (see Numerical Recipes) will be much faster. Figure 13.28 shows an initial
pose estimate for a single-object image as well as the �nal result after nonlinear optimiza-
tion has been applied to that initial solution. The improved pose is clearly better for visual
inspection tasks and possibly better for grasping the object, but perhaps not necessary for
recognition.

13.9 3D Object Reconstruction

3D sensing is important for 3D model building. We can acquire range images of an existant
object in order to create a computer model of it. This process of 3D object reconstruction
has applications in medicine and industrial vision, and is also used for producing the object
models needed for virtual reality environments. By necessity, this section includes some
discussion of object modeling, which is the major topic of the next chapter. The object
reconstruction process has four major steps:

1. 3D data acquisition

2. registration

3. surface construction

4. optimization

In the data acquisition phase, range data must be acquired from a set of views that cover
the surface of the object. Often, 8-10 views are enough, but for complex objects or strict
accuracy requirements, a larger number may be necessary. Of course, more views also mean
more computation, so more is not necessarily better.

Each view obtained consists of a single range image of a portion of the object and often
a registered gray tone or color image. The range data from all of the views will be combined
to produce a surface model of the object. The intensity data can be used in the registration
procedure, but is really meant for use in texture mapping the objects for realistic viewing
in graphics applications. The process of combining the range data by transforming them all
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to a single 3D coordinate system is the registration process.

Once the data have been registered, it is possible to view a cloud of 3D points, but it
takes more work to create an object model. Two possible 3D representations for the object
are 1) a connected mesh of 3D points and edges connecting them representing the object
surface and 2) a set of 3D cubes or voxels representing the entire volume of the object. (See
Chapter 14 for full explanations of these representations.) It is possible to convert from one
representation to the other.

Exercise 31 objects with hidden surfaces

Some objects have hidden surfaces that cannot be imaged regardless of the number of views
taken. Sketch one. For simplicity, you may work with a 2D model and world.

13.9.1 Data Acquisition

Range images registered to color images can be obtained from most modern commercial
scanners. Here, we describe a laboratory system made with o�-the-shelf components, and
emphasize its fundamental operations. Figure 13.29 illustrates a specially built active stereo
vision system that is used for acquiring range/color data. The system employs four color
video cameras mounted on an aluminum bar. The cameras are connected to a digitizing
board, which can switch between the four inputs under computer control, and produces
images at 640 � 480 resolution. Below the cameras, a slide projector sits on a computer-
controlled turntable. The slide projector emits a vertical stripe of white light, which is
manually focused for the working volume. The light stripes are projected in a darkened
room; the two side lights are turned on to take a color image after the range data has been
obtained.

The cameras are calibrated simultaneously using Tsai's algorithm, described in Sec-
tion 13.7. They can be used for either standard two-camera stereo or a more robust four-
camera stereo algorithm. In either case, the projector is used to project a single vertical
light stripe onto the object being scanned. It is controlled by computer to start at the left
of the object and move, via the turntable, from left to right at �xed intervals chosen by the
user to allow for either coarse or �ne resolution. At each position, the cameras take a picture
of the light stripe on the object in the darkened room. On each image, the intersection of
the light stripe with an epipolar line provides a point for the stereo matching. Figure 13.30
illustrates the triangulation process using two cameras and a single light stripe. The two
matched pixels are used to produce a point in 3D space. For a single light stripe, 3D points
are computed at each pixel along that light stripe. Then the projector turns, a new light
stripe is projected, new images are taken, and the process is repeated. The result is a dense
range map, with 3D data associated with each pixel in the left image if that point was also
visible to both the light projector and the right camera.

We can increase the reliability of the image acquisition system by using more than two
cameras. One camera is our base camera in whose coordinate frame the range image will
be computed. A surface point on the object must be visible from the base camera, the light
projector, and at least one of the other three cameras. If it is visible in only one of the
three, then the process reduces to two-camera stereo. If it is visible in two or three of the
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Figure 13.29: A 4-camera stereo acquisition system.

Figure 13.30: The intersections of light stripes with epipolar lines in two images gives a pair
of corresponding points.
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Figure 13.31: A range data set for a toy truck obtained via the 4-camera active stereo
system. The range points were colored with intensity data for display purposes.

three, then the extra images can be used to make the process more robust. In the case of
the base camera plus two more images, we have three points, so there are three di�erent
correspondences that can be triangulated to compute the 3D coordinates. It is likely that
the three separate results will all be di�erent. If they di�er only by a small amount (say,
they are all within a seven cubic millimeter volume), then they are all considered valid, and
the average of the three 3D points can be used as the �nal result for that pixel. Or the pair
of cameras with the widest baseline can be used as a more reliable estimate than the others.
If the point is visible in all four cameras, then there are six possible combinations. Again
we can check whether they all lie in a small volume, throw out outliers, and use an average
value or the nonoutlier value that comes from the camera pair with the widest baseline.
This procedure gives better accuracy than just using a �xed pair of cameras. (In measur-

ing human body position in cars, as shown in Figure 13.1, the expected error was about
2mm in x,y, and z using this procedure.) A range image of a toy truck computed by this
method is shown in Figure 13.31. The 3D truck dataset clearly shows the shape of the truck.

13.9.2 Registration of Views

In order to thoroughly cover the surface of the object, range data must be captured from
multiple views. A transformation 2

1T from view 1 to view 2 is obtained either from precise
mechanical movement or from image correspondence. When a highly accurate device, such
as a calibrated robot or a coordinate measurement machine, is available that can move the
camera system or the object in a controlled way, then the approximate transformations
between the views can be obtained automatically from the system. If the movement of the
cameras or object is not machine controlled, then there must be a method for detecting
correspondences between views that will allow computation of the rigid transformation that
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maps the data from one view into that for another view. This can be done automatically us-
ing 3D features such as corner points and line segments that lead to a number of 3D-3D point
correspondences from which the transformation can be computed. It can also be done inter-
actively, allowing the user to select point correspondences in a pair of images of the object.
In either case, the initial transformation is not likely to be perfect. Robots and machines will
have some associated error that becomes larger as more moves take place. The automatic
correspondence �nder will su�er from the problems of any matching algorithm and may �nd
false correspondences, or the features may be a little o�. Even the human point clicker will
make some errors, or quantization can lead to the right pixel, but the wrong transformation.

To solve these problems, most registration procedures employ an iterative scheme that
begins with an initial estimate of the transformation 21T, no matter how obtained, and re�nes
it via a minimization procedure. For example, the iterative closest point (ICP) algorithm
minimizes the sum of the distances between 3D points 21T

1P and 2P, where 1P is from
one view and 2P is the closest point to it in the other view. A variation of this approach
looks for a point in the second view along a normal extended from the point 21T

1P to the
surface interpolating a neighborhood in the second view. (See the references by Medioni et
al (1992) and Dorai et al (1994) for example.) When color data is available, it is possible
to project the color data from one view onto the color image from another view via the
estimated transformation and de�ne a distance measure based on how well they line up.
This distance can also be iteratively minimized, leading to the best transformation from one
set of 3D points to the other. Figure 13.32 illustrates the registration process for two views
of a sofa using an ICP algorithm.

13.9.3 Surface Reconstruction

Once the data have been registered into a single coordinate system, reconstruction can be-
gin. We would like the reconstructed object to come as close as possible to the shape of the
actual object and to preserve its topology. Figure 13.33 illustrates problems that can occur
in the reconstruction process. The registered range data is dense, but quite noisy. There
are extra points outside the actual chair volume and, in particular, between the spokes of

the back. The reconstruction shown in the middle is naive in that it considered the range
data only as a cloud of 3D points and did not take into account object geometry or neighbor
relationships between range data points. It fails to preserve the topology of the object. The
reconstruction shown on the right is better in that it has removed most of the noise and
the holes between the spokes of the back have been preserved. This reconstruction was
produced by a space-carving algorithm described below.

13.9.4 Space-Carving

The space-carving approach was developed by Curless and Levoy, and the method described
here was implemented by Pulli et al.. Figure 13.34 illustrates the basic concept. At the
left is an object to be reconstructed from a set of views. In the center, there is one camera
viewing the object. The space can be partitioned into areas according to where the points
lie with respect to the object and the camera. The left and bottom sides of the object are
visible to the camera. The volume between the scanned surface and the camera (light gray)
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Figure 13.32: Registration of two range data sets shown at top left. The user has selected
four points on intensity images corresponding to the two range views (upper right). The
initial transformation is slightly o� (lower right). After several iterations, the two range
datasets line up well (lower left).
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Figure 13.33: The registered range data for a chair object (left), problems that can occur
in reconstruction (middle), and a topologically correct rough mesh model (right).

is in front of the object and can be removed. If there is data from the background, as well
as the object, even more volume (darker gray) can be removed. On the other hand, points
behind the object cannot be removed, because the single camera cannot tell if they are part
of the object or behind it. However, another camera viewing the object (at right) can carve
away more volume. A su�cient number of views will carve away most of the unwanted free
space, leaving a voxel model of the object.

The space-carving algorithm discretizes space into a collection of cubes or voxels that
can be processed one at a time. Figure 13.35 illustrates how the status of a single cube with
respect to a single camera view is determined:

� In case (a) the cube lies between the range data and the sensor. Therefore the cube
must lie outside of the object and can be discarded.

� In case (b) the whole cube is behind the range data. As far as the sensor is concerned,
the cube is assumed to lie inside of the object.

� In case (c) the cube is neither fully in front of the data or behind the data and is
assumed to intersect the object surface.

The cube labeling step can be implemented as follows. The eight corners of the cube are
projected to the sensor's image plane, where their convex hull generally forms a hexagon.
The rays from the sensor to the hexagon form a cone, which is truncated so that it just en-
closes the cube. If all the data points projecting onto the hexagon are behind the truncated
cone (are farther than the farthest corner of the cube from the sensor), the cube is outside
of the object. If all those points are closer than the closest cube corner, the cube is inside
the object. Otherwise, it is a boundary cube.
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Figure 13.34: The concept of space carving: (a) object cross section; (b) camera view 1 can
remove all material of light shading; (c) camera view 2 can remove other material. (Extra
material still remains, however.)

Outside                     Inside                    Boundary

SensorObserved
surface

Volume under
consideration

Image
plane

(a)                                              (b)                                            (c)

Figure 13.35: The three possible positions of a cube in space in relation to the object being
reconstructed.
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Figure 13.36: Hierarchical space carving: seven iterations to produce the chair mesh.

So far, we've looked at one cube and one sensor. It takes a number of sensors (or views)
to carve out the free space. The cube labeling step for a given cube is performed for all of
the sensors. If even one sensor says that the cube is outside of the object, then it is outside.
If all of the sensors say that the cube is inside of the object, then it is inside as far as we
can tell. Some other view may determine that it is really outside, but we don't have that
view. In the third case, if the cube is neither inside nor outside, it is a boundary cube.

Instead of using a set of �xed-size cubes, it is more e�cient to perform the cube labeling
in a hierarchic fashion, using an octree structure. The octree is described in detail in the
next chapter, but we can use it intuitively here without confusion. Initially a large cube
surrounds the data. Since by de�nition this large cube intersects the data, it is broken into
eight smaller cubes. Those cubes that are outside the object can be discarded, while those
that are fully inside can be marked as part of the object. The boundary cubes are further
subdivided and the process continues up to the desired resolution. The resultant octree
represents the 3D object. Figure 13.36 illustrates the hierarchical space carving procedure
for the chair object.

The octree representation can be converted into a 3Dmesh for viewing purposes as shown
in Figure 13.36. After the initial mesh is created, it can be optimized by a method that tries
to simplify the mesh and better �t the data. Figure 13.37 shows the registered range data
for the dog object (a), the initial mesh (b), and several steps in the optimization procedure
de�ned by Hoppe et al. (c)-(f). The �nal mesh (f) is much more concise and smoother than
the initial mesh. It can now be used in a graphics system for rendering realistic views of
the object as in Figure 13.38 or in model-based object recognition as in Chapter 14.
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(a)                                                                  (b)                                                                      (c)

(d)                                                                  (e)                                                                      (f)

Figure 13.37: The registered range data and �ve steps in the creation of a dog mesh.

Figure 13.38: (a) A false color rendition of the dog model that a user can manipulate to
select a desired view. (b) The 3D point on the model's nose marked by the arrow is projected
onto 3 color images of the dog to select pixels that can be used to produce realistic color
renderings of the dog.
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Figure 13.39: (Left) Shaded image of Lambertian objects taken with light source near the
camera. (Right) Surface normals sketched on boundaries detected by Canny operator.

13.10 Computing Shape from Shading

Chapters 6 and 12 both discussed how light re
ecting o� smooth curved objects creates a
shaded image. Below, we brie
y show how, under certain assumptions, the shape of the
object can be computed from the shading in the image.

Humans tend to see a smoothly darkening surface as one that is turning away from the
view direction. Using makeup on our face, we can change how others perceive us. Makeup
that is darker than our skin color applied to our outer cheeks makes the face look narrower,
because the darker shading induces the perception that the surface is turning away from the
viewer faster than it actually does. Similarly, makeup lighter than our skin color will have
the opposite e�ect, inducing the perception of a fuller face. Using the formula for Lamber-
tian re
ectance, it is possible to map an intensity value (shading) into a surface normal for
the surface element being imaged. Early work by Horn studied methods of determining the
topography of the moon illuminated by the distant sun and viewed from the distant earth.
The family of methods that have evolved to map back from shading in an image to a surface
normal in the scene has been called shape from shading(SFS).

1 Definition A shape-from-shadingmethod computes surface shape n = f(x; y) from a
shaded image, where n is the normal to the surface at point [x; y] of the image and F I[x; y]
is the intensity.

Figure 13.39 motivates shape from shading methods. At the left is an image of ob-
jects whose surfaces are approximated nicely by the Lambertian re
ectance model: image
intensity is proportional to the angle between the surface normal and the direction of illu-
mination. At the right of Figure 13.39 is a sketch of the surface normals at several points on
the surfaces of the objects. Clearly, the brightest image points indicate where the surface
normal points directly toward the light source: the surface normals pointing back at us
appear as X's in the �gure. At limb points the surface normal is perpendicular to both the
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view direction and the surface boundary: this completely constrains the normal in 3D space.
Using these constraints, surface normals can be propagated to all the image points. This
creates a partial intrinsic image. To obtain the depth z at each image point, we can assign
an arbitrary value of z0 to one of the brightest points and then propagate depth across the
image using the changes in the normals.

Exercise 32

Assume a cube with a Lambertian surface posed such that all face normals make an angle
of at least �=6 with the direction of illumination. Clearly, the brightest image points do not
correspond to normals pointing at the light source. Why is it true for the egg and vase and
not for the cube?

Exercise 33

Using shading, how might it be known whether an object boundary is a limb or blade?

The Lambertian re
ectance model is i = c cos�, where constant c results from a combi-
nation of source energy, surface albedo, and the distances between the surface element and
source and sensor: all these factors are assumed to be constant. The assumption on the
distances will hold when the object is many diameters away from both source and sensor.
Often, it is also assumed that the illuminant direction is known, but as observed above,
illuminant direction can sometimes be computed from weaker assumptions.

The orthographic projection is most convenient for the current development. Also, we use
the camera frame as our only frame for 3D space [x; y; z]. The observed surface is z = f(x; y):
the problem is to compute function f at each image point from the observed intensity values
F I[x; y]. By rewriting and taking derivatives, we arrive at @f

@x
�x + @f

@y
�y � �z = 0, or

in vector terms [p; q;�1]� [�x;�y;�z] = 0, where p and q denote the partial derivatives of
f with respect to x and y, respectively. The last equation de�nes the tangent plane at the
surface point [x; y; f(x; y)] that has (nonunit) normal direction [p; q;�1]. If we know that
[x0; y0; z0] is on the surface, and if we know p and q, then the above planar approximation
allows us to compute surface point [x0 + �x; y0 +�y; z0 +�z] by just moving within the
approximating tangent plane. We can do this if we can estimate p and q from the intensity
image and our assumptions.

We can relate surface normals to intensity by observing a known object. Whenever we
know the surface orientation [p; q;�1] for a point [x; y; f(x; y)] observed at I[x; y], we con-
tribute tuple < p; q; I[x; y] > to a mapping so the surface orientation is associated with the
shading it produces. Figure 13.40 shows how this is a many to one mapping: all surface ori-
entations making a cone of angle � with the illuminant direction will yield the same observed
intensity. The best object to use for such calibration is a sphere, because (a) it exhibits all
surface orientations and (b) the surface normal is readily known from the location of the
image point relative to the center and radius of the sphere. Figure 13.41 shows the results
of viewing a calibration sphere with two di�erent light sources. For each light source, a
re
ectance map can be created that stores with each observed intensity the set of all surface
orientations that produce that intensity.
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Figure 13.40: (Left) An entire cone of possible surface normals will produce the same ob-
served intensity. (Right) A re
ectance map relates surface normals to intensity values: it is
a many-to-one mapping.
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Figure 13.41: Re
ectance maps can be created by using a Lambertian calibration sphere of
the same material as objects to be sensed. In the observed image of the sphere, p and q are
known by analytical geometry for each point I[x; y]: we can insert a tuple < p; q; I[x; y] >
in the mapping for each image point. A di�erent mapping is obtained for each separately
used light source.

Exercise 34

Given a calibration sphere of radius r located at [0; 0; 100] in camera frameC : [x; y; z], derive
the formulas for p and q in terms of location [x; y] in the image. Recall that orthographic
projection e�ectively drops the z-coordinate.
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As Figures 13.39 and 13.41 show, image intensity gives a strong constraint on surface
orientation, but not a unique surface normal. Additional constraints are needed. There are
two general approaches. The �rst approach is to use information from the spatial neigh-
borhood; for example, a pixel and its 4-neighborhood yield �ve instances of the shading
equation that can be integrated to solve for a smooth surface passing through those �ve
points. The second approach uses more than one intensity image so that multiple equations
can be applied to single pixels without regard to neighbors: this has been called photometric
stereo for obvious reasons.

13.10.1 Photometric Stereo

The photometric stereo method takes multiple images of an object illuminated in sequence
by di�erent light sources. A set of intensities is obtained for each image pixel, these can be
looked up in a table to obtain the corresponding surface normal. The table is constructed by
an o�ine photometric calibration procedure as shown in Figure 13.41. Algorithm 4 sketches
this procedure. Photometric stereo is a fast method that has been shown to work well in a
controlled environment. Rajarshi Ray reported excellent results even with specular objects
using three balanced light sources. However, if the environment can be tightly controlled
to support shape from shading, we can do better using structured light as demonstrated by
recent trends in industry.

13.10.2 Integrating Spatial Constraints

Several di�erent methods have been proposed for determining a smooth surface function
z = f(x; y) by applying the shading constraint across spatial neighborhoods. One such
method is to propagate the surface from the brightest image points as mentioned above.
Minimization approaches �nd the best function �tting the available constraints. Figure 13.42
shows results from one such algorithm: a mesh describing the computed surface is shown for
two synthetic objects and one real object. These results may or may not be good, depending
on the task the data are to support. The method is not considered reliable enough to use
in practice.

Shape from shading work has proven that shading information gives strong constraint on
surface shape. It is a wonderful example of a \pure" computer vision problem | the input,
output, and assumptions are very cleary de�ned. Many of the mathematical algorithms
work well in some cases; however, none work well across a variety of scenes. The interested
reader should consult the references to obtain more depth in this subject, especially for the
mathematical algorithms, which were only sketched here.

13.11 Structure from Motion

Humans perceive a great deal of information about the 3D structure of the environment by
moving through it. When we move or when objects move, or both, we obtain information
from images sensed over time. From 
ow vectors or from corresponding points, the 3D scene
surfaces and corners can be reconstructed, as well as the trajectory of the sensor through
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Compute surface normals [p; q] for points of a scene viewed with multiple images
1I; 2I; 3I using di�erent light sources 1L; 2L; 3L.

O�ine Calibration:

1. Place calibration sphere in the center of the scene.

2. For each of the three light sources jL.

(a) Switch on light source jL.

(b) Record image of calibration sphere.

(c) Create re
ectance map jR = f< p; q; jI[x; y] >g where (p; q) is associated with
some intensity jI[x; y] of image jI.

Online Surface Sensing:

1. The object to be sensed appears in center of scene.

2. Take three separate images jI in rapid succession using each light source jL individ-
ually.

3. For each image point [x; y]

(a) Use intensity ij = jI[x; y] to index re
ectance map jR and access the set of
tuples Rj = f(p; q)g associated with intensity ij .

(b) \Intersect" the three sets: S = R1 \R2 \R3.

(c) If S is empty, then set N [x; y] = NULL

else set N [x; y] to the average direction vector in S

4. Return N [x; y] as that part of the intrinsic image storing surface normals.

Algorithm 4: Photometric Stereo with Three Light Sources

Exercise 35 improve Algorithm 4

Improve the e�ciency of Algorithm 4 by moving all the set intersection operations into the
o�ine procedure. Justify why this can be done. What data structure is appropriate for
storing the results for use in the online procedure?
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Figure 13.42: Results of the Tsai-Shah algorithm on synthetic and real images. (Left)
Surface obtained by algorithm from image generated applying a di�use lighting model to
a CAD model of a vase; (center) surface obtained by algorithm from a synthetic image of
a bust of Mozart; (right) surface obtained by algorithm from a real image of a green bell
pepper. (Images courtesy of Mubarak Shah.)

the scene. This intuitive process can be re�ned into an entire class of more speci�cally
de�ned mathematical problems. Construction of useful computer vision algorithms to com-
pute scene structure and object and observer motion has been di�cult: progress has been
steady but slow.

Figure 13.43 illustrates a general situation where both the observer and scene objects
may be moving. The relative motion of objects and observer produces 
ow vectors in the
image; these might be computable via point matching or optical 
ow. Figure 13.44 shows
the case of two signi�cantly di�erent views of �ve 3D points. The many cases reported in
the literature vary in both the problem de�nition and the algorithm achieved.

The 3D objects used in the problem de�nition may be

� points

� lines

� planar surface patches

� curved surface patches

Given the assumptions, an algorithm should yield not only the 3D object structure, but
also their motion relative to the camera coordinate system. Much algorithm development
has been done assuming that the 3D object points have been reliably sensed and matched.
Sensing and matching is di�cult and error prone and few convincing demonstrations have
been made including them. Algorithms based on image 
ow use small time steps between
images and attempt to compute dense 3D structure, whereas algorithms based on feature
correspondences can tolerate larger time steps but can only compute sparse 3D structure.
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Figure 13.43: An observer moves through a scene of moving objects. The motion of a 3D
point projects to a 2D 
ow vector spanning two images close in time.
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Figure 13.44: An observer moves through a scene of stationary objects. 3D object points
WP project to 2D points IP and JP in two images signi�cantly di�erent in time and space
so that point correspondence may be di�cult. Given image point correspondences, the
problem is to compute both the relative motion TR and the 3D coordinates of the points
WP.
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Ullman (1979) reported early results showing that the structure and motion of a rigid
con�guration of four points could be computed, in theory, from three orthographic projec-
tions of these four points using a stationary camera. Ten years later, Huang and Lee (1989)
showed that the problem could not be solved using only two orthographic projections. While
minimalist mathematical models for shape-from-motion are interesting and may be di�cult
to solve, they appear to be impractical because of the errors due to noise or mismatched
points. Haralick and Shapiro treat several mathematical approaches and show methods for
making the computations robust. Brodsky et al (1999) have recently shown good practi-
cal results for computing dense shape from a rigidly moving video camera viewing a static
scene. In the �rst chapter of this book, we asked whether or not we might make a 3D model
of Notre Dame Cathedral from a video made of it. This is one version of the structure-
from-motion problem, and there is now a commercially available solution using computer
vision. For a summary of the methods used, refer to the paper by Faugeras et al (1998).
Having introduced the general problem of computing structure from motion and several of
its aspects, we urge the reader who wants to delve deeper to consult the published literature.

13.12 References

The method for a�ne camera calibration was derived from the earlier work of Ballard and
Brown (1982) and Hall et al (1982). The latter article also describes a structured light
system using a calibrated camera and projector. Several di�erent viable camera calibration
methods are available. For object recognition, the a�ne method for perspective and even
weak perspective are often accurate enough. However, for inspection or accurate pose com-
putation, methods that model radial distortion are needed: the widely-used Tsai procedure
was reported in Tsai (1987). Calibration is appropriate for many machine vision applica-
tions. However, much can be done with an uncalibrated camera: this is, in fact, what we
have when we scan the world with our video camera. We don't know what the focal length
is at every point in time and we don't know any pose parameters relative to any global
coordinate system. However, humans do perceive the 3D structure of the world from such
imagery. 3D structure can be computed within an unknown scale factor, assuming only that
perspective projection applies. The work of Faugeras et al (1998) shows how to construct
texture-mapped 3D models of buildings from image sequences. Brodsky et al (1999) show
results for computing the structure of more general surfaces.

Our P3P solution followed closely the work of Ohmura et al (1988). A similar work
from Linainmaa et al (1988) appeared about the same time. However, note that Fischler
and Bolles (1981) had studied this same problem and had published a closed form solution
to it. Iterative solutions appear to have advantages when the object is being tracked in a
sequence of frames, because a starting point is available, which also helps to discard a false
solution. A good alternative using a weak perspective projection model is given by Hut-
tenlocher and Ullman (1988). Their method is a fast approximation and the derivation is
constructive. M. Fischler and R. Bolles (1981) were the �rst to formally de�ne and study the
perspective N point problem and gave a closed form solution for P3P. They also showed how
to use it by hypothesizing N correspondences, computing object pose, and then verifying
that other model points projected to correponding points in the image. They called their
algorithm RANSAC since they suggested randomly choosing correspondences | something
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that should be avoided if properties of feature points are available.

In recent years there has been much activity in making 3D object models from multi-
ple views in laboratory controlled environments. Many systems and procedures have been
developed. The system for object reconstruction that we reported was constructed at The
University of Washington by K. Pulli, H. Abi-Rached, P. Neal, and L. Shapiro.
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