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Abstract

We present a method to learn and recognize object class
models from unlabeled and unsegmented cluttered scenes
in a scale invariant manner. Objects are modeled as flexi-
ble constellations of parts. A probabilistic representation is
used for all aspects of the object: shape, appearance, occlu-
sion and relative scale. An entropy-based feature detector
is used to select regions and their scale within the image. In
learning the parameters of the scale-invariant object model
are estimated. This is done using expectation-maximization
in a maximum-likelihood setting. In recognition, this model
is used in a Bayesian manner to classify images. The flex-
ible nature of the model is demonstrated by excellent re-
sults over a range of datasets including geometrically con-
strained classes (e.g. faces, cars) and flexible objects (such
as animals).

1. Introduction

Representation, detection and learning are the main issues
that need to be tackled in designing a visual system for rec-
ognizing object categories. The first challenge is coming
up with models that can capture the ‘essence’ of a cate-
gory, i.e. what is common to the objects that belong to it,
and yet are flexible enough to accommodate object vari-
ability (e.g. presence/absence of distinctive parts such as
mustache and glasses, variability in overall shape, changing
appearance due to lighting conditions, viewpoint etc). The
challenge of detection is defining metrics and inventing al-
gorithms that are suitable for matching models to images
efficiently in the presence of occlusion and clutter. Learn-
ing is the ultimate challenge. If we wish to be able to design
visual systems that can recognize, say, 10,000 object cate-
gories, then effortless learning is a crucial step. This means
that the training sets should be small and that the operator-
assisted steps that are required (e.g. elimination of clutter

in the background of the object, scale normalization of the
training sample) should be reduced to a minimum or elimi-
nated.

The problem of describing and recognizing categories,
as opposed to specific objects (e.g. [6, 9, 11]), has re-
cently gained some attention in the machine vision litera-
ture [1, 2, 3, 4, 13, 14, 19] with an emphasis on the de-
tection of faces [12, 15, 16]. There is broad agreement
on the issue of representation: object categories are rep-
resented as collection of features, or parts, each part has a
distinctive appearance and spatial position. Different au-
thors vary widely on the details: the number of parts they
envision (from a few to thousands of parts), how these parts
are detected and represented, how their position is repre-
sented, whether the variability in part appearance and posi-
tion is represented explicitly or is implicit in the details of
the matching algorithm. The issue of learning is perhaps the
least well understood. Most authors rely on manual steps to
eliminate background clutter and normalize the pose of the
training examples. Recognition often proceeds by an ex-
haustive search over image position and scale.

We focus our attention on the probabilistic approach pro-
posed by Burl et al. [4] which models objects as random
constellations of parts. This approach presents several ad-
vantages: the model explicitly accounts for shape variations
and for the randomness in the presence/absence of features
due to occlusion and detector errors. It accounts explicitly
for image clutter. It yields principled and efficient detection
methods. Weber et al. [18, 19] proposed a maximum like-
lihood unsupervised learning algorithm for the constella-
tion model which successfully learns object categories from
cluttered data with minimal human intervention. We pro-
pose here a number of substantial improvement to the con-
stellation model and to its maximum likelihood learning al-
gorithm. First: while Burl et al. and Weber et al. model
explicitly shape variability, they do not model the variabil-
ity of appearance. We extend their model to take this aspect



into account. Second, appearance here is learnt simultane-
ously with shape, whereas in their work the appearance of a
part is fixed before shape learning. Third: they use correla-
tion to detect their parts. We substitute their front end with
an interest operator, which detects regions and their scale in
the manner of [8, 10]. Fourthly, Weber et al. did not ex-
periment extensively with scale-invariant learning, most of
their training sets are collected in such a way that the scale is
approximately normalized. We extend their learning algo-
rithm so that new object categories may be learnt efficiently,
without supervision, from training sets where the object ex-
amples have large variability in scale. A final contribution
is experimenting with a number of new image datasets to
validate the overall approach over several object categories.
Examples images from these datasets are shown in figure 1.

2. Approach
Our approach to modeling object classes follows on from
the work of Weber et al. [17, 18, 19]. An object model
consists of a number of parts. Each part has an appear-
ance, relative scale and can be be occluded or not. Shape
is represented by the mutual position of the parts. The en-
tire model is generative and probabilistic, so appearance,
scale, shape and occlusion are all modeled by probabil-
ity density functions, which here are Gaussians. The pro-
cess of learning an object category is one of first detecting
regions and their scales, and then estimating the parame-
ters of the above densities from these regions, such that the
model gives a maximum-likelihood description of the train-
ing data. Recognition is performed on a query image by
again first detecting regions and their scales, and then eval-
uating the regions in a Bayesian manner, using the model
parameters estimated in the learning.

The model, region detector, and representation of ap-
pearance are described in detail in the following subsec-
tions.

2.1. Model structure
The model is best explained by first considering recogni-
tion. We have learnt a generative object class model, with
P parts and parameters θ. We are then presented with a
new image and we must decide if it contains an instance of
our object class or not. In this query image we have identi-
fied N interesting features with locations X, scales S, and
appearances A. We now make a Bayesian decision, R:

R =
p(Object|X,S,A)

p(No object|X,S,A)

=
p(X,S,A|Object) p(Object)

p(X,S,A|No object) p(No object)

≈ p(X,S,A| θ) p(Object)
p(X,S,A|θbg) p(No object)

The last line is an approximation since we will only use a
single value for θ (the maximum-likelihood value) rather
than integrating over p(θ) as we strictly should. Likewise,
we assume that all non-object images can also be modeled
by a background with a single set of parameters θbg . The
ratio of the priors may be estimated from the training set or
set by hand (usually to 1). Our decision requires the calcu-
lation of the ratio of the two likelihood functions. In order
to do this, the likelihoods may be factored as follows:

p(X,S,A| θ) =
∑
h∈H

p(X,S,A,h| θ) =

∑
h∈H

p(A|X,S,h, θ)︸ ︷︷ ︸
Appearance

p(X|S,h, θ)︸ ︷︷ ︸
Shape

p(S|h, θ)︸ ︷︷ ︸
Rel. Scale

p(h|θ)︸ ︷︷ ︸
Other

Since our model only has P (typically 3-7) parts but there
are N (up to 30) features in the image, we introduce an in-
dexing variable h which we call a hypothesis. h is a vector
of length P , where each entry is between 0 and N which al-
locates a particular feature to a model part. The unallocated
features are assumed to be part of the background, with 0 in-
dicating the part is unavailable (e.g. because of occlusion).
The set H is all valid allocations of features to the parts;
consequently |H| is O(NP ).

In the following we sketch the form for likelihood ra-
tios of each of the above factored terms. Space prevents
a full derivation being included, but the full expressions
follow from the methods of [17]. It will be helpful to de-
fine the following notation: d = sign(h) (which is a bi-
nary vector giving the state of occlusion for each part),
n = N − sum(d) (the number of background features un-
der the current hypothesis), and f = sum(d) which is the
number of foreground features.

Appearance. Each feature’s appearance is represented
as a point in some appearance space, defined below. Each
part p has a Gaussian density within this space, with mean
and covariance parameters θapp

p = {cp, Vp} which is inde-
pendent of other parts’ densities. The background model
has parameters θapp

bg = {cbg, Vbg}. Both Vp and Vbg are
assumed to be diagonal. Each feature selected by the hy-
pothesis is evaluated under the appropriate part density. All
features not selected by the hypothesis are evaluated under
the background density. The ratio reduces to:

p(A|X,S,h, θ)
p(A|X,S,h, θbg)

=
P∏

p=1

(
G(A(hp)|cp, Vp)

G(A(hp)|cbg, Vbg)

)dp

where G is the Gaussian distribution, and dp is the pth entry
of the vector d, i.e. dp = d(p). So the appearance of each
feature in the hypothesis is evaluated under foreground and
background densities and the ratio taken. If the part is oc-
cluded, the ratio is 1 (dp = 0).



Motorbikes Airplanes Faces Cars (Side) Cars (Rear) Spotted Cats Background

Figure 1: Some sample images from the datasets. Note the large variation in scale in, for example, the cars (rear) database. These datasets
are from http://www.robots.ox.ac.uk/∼vgg/data/, except for the Cars (Side) from (http://l2r.cs.uiuc.edu/∼cogcomp/index research.html)
and Spotted Cats from the Corel Image library. A Powerpoint presentation of the figures in this paper can be found at
http://www.robots.ox.ac.uk/∼vgg/presentations.html



Shape. The shape is represented by a joint Gaussian den-
sity of the locations of features within a hypothesis, once
they have been transformed into a scale-invariant space.
This is done using the scale information from the features
in the hypothesis, so avoiding an exhaustive search over
scale that other methods use. The density has parameters
θshape = {µ,Σ}. Note that, unlike appearance whose co-
variance matrices Vp, Vbg are diagonal, Σ is a full matrix.
All features not included in the hypothesis are considered
as arising from the background. The model for the back-
ground assumes features to be spread uniformly over the
image (which has area α), with locations independent of the
foreground locations. If a part is occluded it is integrated
out of the joint foreground density.

p(X|S,h, θ)
p(X|S,h, θbg)

= G(X(h)|µ,Σ)αf

Relative scale. The scale of each part p relative to a ref-
erence frame is modeled by a Gaussian density which has
parameters θscale = {tp, Up}. The parts are assumed to
be independent to one another. The background model as-
sumes a uniform distribution over scale (within a range r).

p(S|h, θ)
p(S|h, θbg)

=
P∏

p=1

G(S(hp)|tp, Up)dp rf

Occlusion and Statistics of the feature finder.

p(h|θ)
p(h|θbg)

=
pPoiss(n|M)
pPoiss(N |M)

1
nCr(N, f)

p(d|θ)

The first term models the number of features detected using
a Poisson distribution, which has a mean M . The second is
a book-keeping term for the hypothesis variable and the last
is a probability table (of size 2P ) for all possible occlusion
patterns and is a parameter of the model.

The model of Weber et al. contains the shape and oc-
clusion terms to which we have added the appearance and
relative scale terms. Since the model encompasses many of
the properties of an object, all in a probabilistic way, this
model can represent both geometrically constrained objects
(where the shape density would have a small covariance)
and objects with distinctive appearance but lacking geomet-
ric form (the appearance densities would be tight, but the
shape density would now be looser). From the equations
above we can now calculate the overall likelihood ratio from
a given set of X,S,A. The intuition is that the majority of
the hypotheses will be low scoring as they will be picking
up features from background junk on the image but hope-
fully a few features will genuinely be part of the object and
hypotheses using these will score highly. However, we must
be able to locate features over many different instances of
the object and over a range of scales in order for this ap-
proach to work.

2.2. Feature detection
Features are found using the detector of Kadir and
Brady [7]. This method finds regions that are salient over
both location and scale. For each point on the image a his-
togram P (I) is made of the intensities in a circular region
of radius (scale) s. The entropy H(s) of this histogram is
then calculated and the local maxima of H(s) are candidate
scales for the region. The saliency of each of these candi-
dates is measured by H dP

ds (with appropriate normalization
for scale [7, 8]). The N regions with highest saliency over
the image provide the features for learning and recognition.
Each feature is defined by its centre and radius (the scale).

A good example illustrating the saliency principle is that
of a bright circle on a dark background. If the scale is too
small then only the white circle is seen, and there is no ex-
trema in entropy. There is an entropy extrema when the
scale is slightly larger than the radius of the bright circle,
and thereafter the entropy decreases as the scale increases.

In practice this method gives stable identification of fea-
tures over a variety of sizes and copes well with intra-class
variability. The saliency measure is designed to be invari-
ant to scaling, although experimental tests show that this is
not entirely the case due to aliasing and other effects. Note,
only monochrome information is used to detect and repre-
sent features.

2.3. Feature representation
The feature detector identifies regions of interest on each
image. The coordinates of the centre give us X and the size
of the region gives S. Figure 2 illustrates this on two typical
images from the motorbike dataset.
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Figure 2: Output of the feature detector

Once the regions are identified, they are cropped from
the image and rescaled to the size of a small (typically
11×11) pixel patch. Thus, each patch exists in a 121 dimen-
sional space. Since the appearance densities of the model
must also exist in this space, we must somehow reduce the
dimensionality of each patch whilst retaining its distinctive-
ness, since a 121-dimensional Gaussian is unmanageable
from a numerical point of view and also the number of pa-
rameters involved (242 per model part) are too many to be
estimated.

This is done by using principal component analysis
(PCA). In the learning stage, we collect the patches from



all images and perform PCA on them. Each patch’s ap-
pearance is then a vector of the coordinates within the first
k (typically 10-15) principal components, so giving us A.
This gives a good reconstruction of the original patch whilst
using a moderate number of parameters per part (20-30).
ICA and Fisher’s linear discriminant were also tried, but in
experiments they were shown to be inferior.

We have now computed X, S, and A for use in learning
or recognition. For a typical image, this takes 10-15 seconds
(all timings given are for a 2 Ghz machine), mainly due
to the unoptimized feature detector. Optimization should
reduce this to a few seconds.

2.4. Learning
The task of learning is to estimate the parameters
θ = {µ,Σ, c, V,M, p(d|θ), t, U} of the model discussed
above. The goal is to find the parameters θ̂ML which best
explain the data X,S,A from all the training images, that is
maximize the likelihood: θ̂ML = arg max

θ
p(X,S,A| θ).

Learning is carried out using the expectation-
maximization (EM) algorithm [5] which iteratively
converges, from some random initial value of θ to a maxi-
mum (which might be a local one). It works in two stages;
the E-step in which, given the current value of θ, some
statistics are computed and the M-step in which the current
value of θ is updated using the statistics from the E-step.
The process is then repeated until convergence. The scale
information from each feature allows us to learn the model
shape in a scale-invariant space. Since the E-step involves
evaluating the likelihood for each hypothesis and there
being O(NP ) of them per image, efficient search methods
are needed. A∗ and space-search methods are used, giving
a considerable performance improvement. Despite these
methods, a P = 6-7 part model with N = 20-30 features
per image (a practical maximum), using 400 training
images, takes around 24-36 hours to run. Learning complex
models such as these has certain difficulties. Table 1
illustrates how the number of parameters in the model
grows with the number of parts, (assuming k = 15). To

Parts 2 3 4 5 6 7
# parameters 77 123 177 243 329 451

Table 1: Relationship between number of parameters and number
of parts in model

avoid over-fitting data, large datasets are used (up to 400
images in size). Surprisingly, given the complexity of the
search space, the algorithm is remarkable consistent in
it’s convergence, so much so that validation sets were not
necessary. Initial conditions were chosen randomly within
a sensible range and convergence usually occurred within
50-100 EM iterations. Using a typical 6 part model on a

typical dataset (Motorbikes), 10 runs from different initial
conditions gave the same classification performance for
9 of them, with the other showing a difference of under
1%. Since the model is a generative one, the background
images are not used in learning except for one instance:
the appearance model has a distribution in appearance
space modeling background features. Estimating this from
foreground data proved inaccurate so the parameters were
estimated from a set of background images and not updated
within the EM iteration.

2.5. Recognition

Recognition proceeds by first detecting features, and then
evaluating these features using the learnt model, as de-
scribed in section 2.1. By calculating the likelihood ratio,
R, and comparing it to a threshold; the presence or absence
of the object within the image may be determined. In recog-
nition, as in learning, efficient search techniques are used
since large N and P mean around 2-3 seconds are taken
per image. It is also possible to search reliably for more
than one instance in an image, as needed for the Cars (Side)
dataset.

3. Results

Experiments were carried out as follows: each dataset
was split randomly into two separate sets of equal size.
The model was then trained on the first and tested on the
second. In recognition, the decision was (as described
above) a simple object present/absent one, except for the
cars (side) dataset where multiple instances of the object
were to be found. The performance figures quoted are
the receiver-operating characteristic (ROC) equal error rates
(i.e. p(True positive)=1-p(False positive)) testing against the
background dataset. For example a figure of 91% means
that 91% of the foreground images were correctly classified
but 9% of the background images were incorrectly classi-
fied (i.e. thought to be foreground). A limited amount of
preprocessing was performed on some of the datasets. For
the motorbikes and airplanes the images were flipped to en-
sure the object was facing the same way. The spotted cat
dataset was only 100 images originally, so another 100 were
added by reflecting the original images, making 200 in to-
tal. Amongst the datasets, only the motorbikes, airplanes
and cars (rear) contained any meaningful scale variation.

There were two phases of experiments. In the first those
datasets with scale variability were normalized so that the
objects were of uniform size. The algorithm was then eval-
uated on the datasets and compared to other approaches. In
the second phase the algorithm was run on the datasets con-
taining scale variation and the performance compared to the
scale-normalized case.



In all the experiments, the following parameters were
used: k = 15, P = 6 and on average N = 20. The only
parameter that was adjusted at all in all the following ex-
periments was the scale over which features were found.
The standard setting was 4 − 60 pixels but for the scale-
invariant experiments, this was changed to account for the
wider scale variation in features.

Figures 5-8 show models and test images for four of the
datasets. Notice how each model captures the essence, be it
in appearance or shape or both, of the object. The face and
motorbike datasets have tight shape models, but some of the
parts have a highly variable appearance. For these parts any
feature in that location will do regardless of what it looks
like. Conversely, the spotted cat dataset has a loose shape
model, but a highly distinctive appearance for each patch.
In this instance, the model is just looking for patches of
spotty fur, regardless of their location. The differing nature
of these examples illustrate the flexible nature of the model.

The majority of errors are a result of the object receiv-
ing insufficient coverage from the feature detector. This
happens for a number of reasons. One possibility is that,
when a threshold is imposed on N (for the sake of speed),
many features on the object are removed. Alternatively, the
feature detector seems to perform badly when the object is
much darker than the background (see examples in figure
5). Finally, the clustering of salient points into features,
within the feature detector, is somewhat temperamental and
can result in parts of the object being missed.

Figure 3 shows a recall-precision curve1 (RPC) and a ta-
ble comparing the algorithm to previous approaches to ob-
ject class recognition [1, 17, 19]. In all cases the perfor-
mance of the algorithm is superior to the earlier methods,
despite not being tuned for a particular dataset.

Figure 4(a) illustrates the algorithm performs well even
when the signal-to-noise ratio is degraded by introducing
background images into the training set and Fig. 4(b) shows
how variation in the number of parts affects performance.

Dataset Ours Others Ref.

Motorbikes 92.5 84 [17]
Faces 96.4 94 [19]

Airplanes 90.2 68 [17]
Cars(Side) 88.5 79 [1]

Agarwal−Roth algorithm

Our algorithm

Figure 3: Comparison to other methods [1, 17, 19]. The diagram
on the right shows the RPC for [1] and our algorithm on the cars
(side) dataset. On the left the table gives ROC equal error rates
(except for the car (side) dataset where it is a recall-precision equal
error) on a number of datasets. The errors for our algorithm are at
least half those of the other methods, except for the face dataset.

1Recall is defined as the number of true positives over total positives in
the data set, and precision is the number of true positives over the sum of
false positives and true positives.
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Figure 4: (a) shows the effect of mixing background images into
the training data (in this case, the face dataset). Even with a 50-50
mix of images with/without objects, the resulting model error is a
tolerable 13%. In (b), we see how the performance drops off as
the number of parts in the model is reduced.
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Figure 5: A typical face model with 6 parts. The top left fig-
ure shows the shape model. The ellipses represent the variance of
each part (the covariance terms cannot easily be shown) and the
probability of each part being present is shown just to the right
of the mean. The top right figure shows 10 patches closest to the
mean of the appearance density for each part and the background
density, along with the determinant of the variance matrix, so as to
give an idea as to the relative tightness of each distribution. Below
these two are some sample test images, with a mix of correct and
incorrect classifications. The pink dots are features found on each
image and the coloured circles indicate the features of the best hy-
pothesis in the image. The size of the circles indicates the score of
the hypothesis (the bigger the better).
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Figure 6: A typical motorbike model with 6 parts. Note the clear
identification of the front and rear wheels, along with other parts
such as the fuel tank.
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Figure 7: A typical spotted cat model with 6 parts. Note the loose
shape model but distinctive “spotted fur” appearance.
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Figure 8: A typical airplane model with 6 parts.

Dataset Total
size of
dataset

Object
width

(pixels)

Motorbike

model

Face

model

Airplane

model

Cat

model

Motorbikes 800 200 92.5 50 51 56
Faces 435 300 33 96.4 32 32

Airplanes 800 300 64 63 90.2 53
Spotted Cats 200 80 48 44 51 90 .0

Table 2: A confusion table for a number of datasets. The di-
agonal shows the ROC equal error rates on test data across four
categories, where the algorithm’s parameters were kept exactly
the same, despite a range of image sizes and object types. The
performance above can be improved dramatically (motorbikes in-
crease to 95.0%, airplanes to 94.0% and faces to 96.8%) if feature
scale is adjusted on a per-dataset basis. The off-diagonal elements
demonstrate how good, for example, a motorbike model is at dis-
tinguishing between spotted cats and background images: 48% -
at the level of chance. So despite the models being inherently gen-
erative, they perform well in a distinctive setting.

Table 2 shows the performance of the algorithm across
the four datasets, with the learnt models illustrated in fig-
ures 5-8. Exactly the same algorithm settings are used for
all models. Note that the performance is above 90% for all
four datasets. In addition, the table shows the confusion
between models which is usually at the level of chance.

Table 3 compares the performance of the scale-invariant
models on unscaled images to that of the scale-variant mod-
els on the pre-scaled data. It can be seen that the drop
in performance is marginal despite a wide range of ob-
ject scales. In the case of the cars (rear) dataset, there is
a significant improvement in performance with the scale-



invariant model. This is due to the feature detector per-
forming badly on small images (< 150 pixels) and in the
pre-scaled case, all were scaled down to 100 pixels. Fig-
ure 9 shows the scale-invariant model for this dataset. This
dataset was tested against background road scenes (rather
than the background images, examples of which are in Fig.
1) to make a more realistic experiment.

Total size Object size Pre-scaled Unscaled
Dataset of dataset range (pixels) performance performance

Motorbikes 800 200-480 95.0 93.3
Airplanes 800 200-500 94.0 93.0

Cars (Rear) 800 100-550 84.8 90.3

Table 3: Results for scale-invariant learning/recognition.
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Figure 9: A scale-invariant car model with 6 parts.

4. Conclusions and Further work
The recognition results presented here convincingly demon-
strate the power of the constellation model and the associ-
ated learning algorithm: the same piece of code performs
well (less than 10% error rate) on six diverse object cat-
egories presenting a challenging mixture of visual charac-
teristics. Learning is achieved without any supervision on
datasets that contain a wide range of scales as well as clut-
ter.

Currently, the framework is heavily dependent on the
feature detector picking up useful features on the object. We
are addressing this by extending the model to incorporate
several classes of feature, e.g. edgels. Other than this there
are two areas where improvements will be very beneficial.

The first is in a further generalization of the model struc-
ture to have a multi-modal appearance density with a single
shape distribution. This will allow more complex appear-
ances to be represented, for example faces with and without
sunglasses. Second, we have built in scale-invariance, but
full affine-invariance should also be possible. This would
enable learning and recognition from images with much
larger viewpoint variation.
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