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Topic	
•  How	do	we	connect	nodes	with	a	
switch	instead	of	mul@ple	access	
–  Uses	mul@ple	links/wires		
–  Basis	of	modern	(switched)	Ethernet	

Switch	
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Switched	Ethernet	
•  Hosts	are	wired	to	Ethernet	
switches	with	twisted	pair	
–  Switch	serves	to	connect	the	hosts	
– Wires	usually	run	to	a	closet	

	 Switch	

Twisted	pair	
Switch	ports	
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What’s	in	the	box?	
•  Remember	from	protocol	layers:	

Network	
Link	

Network	
Link	

Link	 Link	

Physical	 Physical	Hub,	or	
repeater	

Switch	

Router	

All	look	like	this:	



Inside	a	Hub	
•  All	ports	are	wired	together;	more	convenient	and	
reliable	than	a	single	shared	wire	
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↔	



Inside	a	Switch	
•  Uses	frame	addresses	to	connect	input	port	to	the	right	
output	port;	mul@ple	frames	may	be	switched	in	parallel	
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.	.	.	

Fabric	



Inside	a	Switch	(2)	
•  Port	may	be	used	for	both	input	and	output	(full-duplex)	

–  Just	send,	no	mul@ple	access	protocol	
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.	.	.	

1	
2	
3	

4

1	à	4	
and	
2	à	3	



Inside	a	Switch	(3)	
•  Need	buffers	for	mul@ple	inputs	to	send	to	one	output	
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Input	Buffer	 Output	Buffer	Fabric	

Input	 Output	



Inside	a	Switch	(4)	
•  Sustained	overload	will	fill	buffer	and	lead	to	frame	loss	
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Input	Buffer	 Output	Buffer	Fabric	

Input	 Output	

XXX	

Loss!	
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Advantages	of	Switches	
•  Switches	and	hubs	have	replaced	the	

shared	cable	of	classic	Ethernet	
–  Convenient	to	run	wires	to	one	loca@on	
–  More	reliable;	wire	cut	is	not	a	single	
point	of	failure	that	is	hard	to	find	

•  Switches	offer	scalable	performance	
–  E.g.,	100	Mbps	per	port	instead	of	100	
Mbps	for	all	nodes	of	shared	cable	/	hub	



Switch	Forwarding	
•  Switch	needs	to	find	the	right	output	port	for	the	
des@na@on	address	in	the	Ethernet	frame.	How?	
– Want	to	let	hosts	be	moved	around	readily;	don’t	look	at	IP	
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.	.	.	

.	.	.	

.	.	.	 .	.	.	

Source	

Des@na@on	

Ethernet	Frame	
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Backward	Learning	
•  Switch	forwards	frames	with	a	
port/address	table	as	follows:	
1.  To	fill	the	table,	it	looks	at	the	

source	address	of	input	frames	
2.  To	forward,	it	sends	to	the	port,	

or	else	broadcasts	to	all	ports	
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Backward	Learning	(2)	
•  1:	A	sends	to	D	

Switch	

D

Address Port 
A 
B 
C 
D 
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Backward	Learning	(3)	
•  2:	D	sends	to	A	

Switch	

D

Address Port 
A 1 
B 
C 
D 
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Backward	Learning	(4)	
•  3:	A	sends	to	D	

Switch	

D

Address Port 
A 1 
B 
C 
D 4 
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Backward	Learning	(5)	
•  3:	A	sends	to	D	

Switch	

D

Address Port 
A 1 
B 
C 
D 4 



Learning	with	Mul@ple	Switches	
•  Just	works	with	mul@ple	switches	and	a	mix	of	hubs	
assuming	no	loops,	e.g.,	A	sends	to	D	then	D	sends	to	A	
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Switch	



Learning	with	Mul@ple	Switches	(2)	
•  Just	works	with	mul@ple	switches	and	a	mix	of	hubs	
assuming	no	loops,	e.g.,	A	sends	to	D	then	D	sends	to	A	
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Switch	



Learning	with	Mul@ple	Switches	(3)	
•  Just	works	with	mul@ple	switches	and	a	mix	of	hubs	
assuming	no	loops,	e.g.,	A	sends	to	D	then	D	sends	to	A	
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Switch	
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Topic	
•  How	can	we	connect	switches	in	
any	topology	so	they	just	work	
–  This	is	part	2	of	switched	Ethernet	

	

Loops	–	yikes!	
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Problem	–	Forwarding	Loops		
•  May	have	a	loop	in	the	topology	

–  Redundancy	in	case	of	failures	
–  Or	a	simple	mistake	

•  Want	LAN	switches	to	“just	work”	
–  Plug-and-play,	no	changes	to	hosts	
–  But	loops	cause	a	problem	…	

Redundant		
Links	
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Forwarding	Loops	(2)		
•  Suppose	the	network	is	started	and	
A	sends	to	F.	What	happens?	

Lek	/	Right	

A	 B	

C	

D	

E	 F	
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Forwarding	Loops	(3)		
•  Suppose	the	network	is	started	and	
A	sends	to	F.	What	happens?	
–  A	à	C	à	B,	D-lek,	D-right	
–  D-lek	à	C-right,	E,	F	
–  D-right	à	C-lek,	E,	F	
–  C-right	à	D-lek,	A,	B	
–  C-lek	à	D-right,	A,	B	
–  D-lek	à	…	
–  D-right	à	…	

Lek	/	Right	

A	 B	

C	

D	

E	 F	
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Spanning	Tree	Solu@on	
•  Switches	collec@vely	find	a	
spanning	tree	for	the	topology	
–  A	subset	of	links	that	is	a	tree	(no	
loops)	and	reaches	all	switches	

–  They	switches	forward	as	normal						
on	the	spanning	tree	

–  Broadcasts	will	go	up	to	the	root	of	
the	tree	and	down	all	the	branches	



Spanning	Tree	(2)	
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Topology	 One	ST	 Another	ST	



Spanning	Tree	(3)	
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Topology	 One	ST	 Another	ST	

Root	
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Spanning	Tree	Algorithm	
•  Rules	of	the	distributed	game:	

–  All	switches	run	the	same	algorithm	
–  They	start	with	no	informa@on	
–  Operate	in	parallel	and	send	messages	
–  Always	search	for	the	best	solu@on	

•  Ensures	a	highly	robust	solu@on	
–  Any	topology,	with	no	configura@on	
–  Adapts	to	link/switch	failures,	…	
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Radia	Perlman	(1952–)	
•  Key	early	work	on	rou@ng	
protocols	
–  Rou@ng	in	the	ARPANET	
–  Spanning	Tree	for	switches	(next)	
–  Link-state	rou@ng	(later)	

	

•  Now	focused	on	network	
security	
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Spanning	Tree	Algorithm	(2)	
•  Outline:	

1.  Elect	a	root	node	of	the	tree	
(switch	with	the	lowest	address)	

2.  Grow	tree	as	shortest	distances	
from	the	root	(using	lowest	
address	to	break	distance	@es)	

3.  Turn	off	ports	for	forwarding	if	
they	aren’t	on	the	spanning	tree	



Spanning	Tree	Algorithm	(3)	
•  Details:	

–  Each	switch	ini@ally	believes	it	is	the	root	of	the	tree	
–  Each	switch	sends	periodic	updates	to	neighbors	with:	

•  Its	address,	address	of	the	root,	and	distance	(in	hops)	to	root	
–  Switches	favors	ports	with	shorter	distances	to	lowest	root	

•  Uses	lowest	address	as	a	@e	for	distances	
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C	

Hi,	I’m	C,	the	root	is	A,	it’s	2	hops	away		 or	(C,	A,	2)	
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Spanning	Tree	Example	
•  1st	round,	sending:	

–  A	sends	(A,	A,	0)	to	say	it	is	root	
–  B,	C,	D,	E,	and	F	do	likewise	

•  1st	round,	receiving:	
–  A	s@ll	thinks	is	it	(A,	A,	0)	
–  B	s@ll	thinks	(B,	B,	0)	
–  C	updates	to	(C,	A,	1)	
–  D	updates	to	(D,	C,	1)	
–  E	updates	to	(E,	A,	1)	
–  F	updates	to	(F,	B,	1)	

A,A,0	 B,B,0	

C,C,0	

D,D,0	

E,E,0	 F,F,0	
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Spanning	Tree	Example	(2)	
•  2nd	round,	sending	

–  Nodes	send	their	updated	state	
•  2nd	round	receiving:	

–  A	remains	(A,	A,	0)	
–  B	updates	to	(B,	A,	2)	via	C	
–  C	remains	(C,	A,	1)	
–  D	updates	to	(D,	A,	2)	via	C	
–  E	remains	(E,	A,	1)	
–  F	remains	(F,	B,	1)	

A,A,0	 B,B,0	

C,A,1	

D,C,1	

E,A,1	 F,B,1	
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Spanning	Tree	Example	(3)	
•  3rd	round,	sending	

–  Nodes	send	their	updated	state	
•  3rd	round	receiving:	

–  A	remains	(A,	A,	0)	
–  B	remains	(B,	A,	2)	via	C	
–  C	remains	(C,	A,	1)	
–  D	remains	(D,	A,	2)	via	C-lek	
–  E	remains	(E,	A,	1)	
–  F	updates	to	(F,	A,	3)	via	B	

A,A,0	 B,A,2	

C,A,1	

D,A,2	

E,A,1	 F,B,1	
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Spanning	Tree	Example	(4)	
•  4th	round	

–  Steady-state	has	been	reached	
–  Nodes	turn	off	forwarding	that		is	not	
on	the	spanning	tree	

•  Algorithm	con@nues	to	run	
–  Adapts	by	@ming	out	informa@on	
–  E.g.,	if	A	fails,	other	nodes	forget	it,	
and	B	will	become	the	new	root	

A,A,0	 B,A,2	

C,A,1	

D,A,2	

E,A,1	 F,A,3	
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Spanning	Tree	Example	(5)	
•  Forwarding		proceeds	as	usual	on	the	ST	
•  Ini@ally	D	sends	to	F:	

•  And	F	sends	back	to	D:	

		

A,A,0	 B,A,2	

C,A,1	

D,A,2	

E,A,1	 F,A,3	
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Spanning	Tree	Example	(6)	
•  Forwarding		proceeds	as	usual	on	the	ST	
•  Ini@ally	D	sends	to	F:	

–  D	à	C-lek	
–  C	à	A,	B		
–  A	à	E	
–  B	à	F	

•  And	F	sends	back	to	D:	
–  F	à	B	
–  B	à	C	
–  C	à	D	
(hm,	not	such	a	great	route)	

A,A,0	 B,A,2	

C,A,1	

D,A,2	

E,A,1	 F,A,3	
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Where	we	are	in	the	Course	
•  Star@ng	the	Network	Layer!	

–  Builds	on	the	link	layer.	Routers	send	
packets	over	mul@ple	networks	

Physical	
Link	

Network	
Transport	
Applica@on	
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Why	do	we	need	a	Network	layer?	
•  We	can	already	build	networks		
with	links	and	switches	and	send	
frames	between	hosts	…	
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Shortcomings	of	Switches	
1.  Don’t	scale	to	large	networks	

–  Blow	up	of	rou@ng	table,	broadcast	

Table	for	all	des@na@ons	in	the	world!	

Broadcast	new	des@na@ons	to	the	whole	world!	
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Shortcomings	of	Switches	(2)	
2.  Don’t	work	across	more	than	one	

link	layer	technology	
–  Hosts	on	Ethernet	+	3G	+	802.11		…	

Can	we	play	too?	 Go	away!	
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Shortcomings	of	Switches	(3)	
3.  Don’t	give	much	traffic	control	

– Want	to	plan	routes	/	bandwidth	

That	was	lame.	
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Topic	
•  How	do	routers	forward	packets?	

– We’ll	look	at	how	IP	does	it	
–  (We’ll	cover	rou@ng	later)	

	
Forward!	

packet	
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Recap	
•  We	want	the	network	layer	to:	

–  Scale	to	large	networks	
•  Using	addresses	with	hierarchy	

–  Support	diverse	technologies	
•  Internetworking	with	IP	

–  Use	link	bandwidth	well	
•  Lowest-cost	rou@ng	

Next	
@me	

More	
later	

This	
lecture	



IP	Addresses	
•  IPv4	uses	32-bit	addresses	

–  Later	we’ll	see	IPv6,	which	uses	128-bit	addresses	
•  Wripen	in	“doped	quad”	nota@on	

–  Four	8-bit	numbers	separated	by	dots	
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aaaaaaaabbbbbbbbccccccccdddddddd  ↔ A.B.C.D 

8	bits	 8	bits	 8	bits	 8	bits	

00010010000111110000000000000001  ↔		



IP	Prefixes	
•  Addresses	are	allocated	in	blocks	called	prefixes	

–  Addresses	in	an	L-bit	prefix	have	the	same	top	L	bits	
–  There	are	232-L	addresses	aligned	on	232-L	boundary	
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IP	Prefixes	(2)	
•  Wripen	in	“IP	address/length”	nota@on	

–  Address	is	lowest	address	in	the	prefix,	length	is	prefix	bits	
–  E.g.,	128.13.0.0/16	is	128.13.0.0	to	128.13.255.255	
–  So	a	/24	(“slash	24”)	is	256	addresses,	and	a	/32	is	one	address	
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000100100001111100000000xxxxxxxx ↔  

↔ 128.13.0.0/16 



Classful	IP	Addressing	
•  Originally,	IP	addresses	came	in	fixed	size	blocks	with	
the	class/size	encoded	in	the	high-order	bits	
–  They	s@ll	do,	but	the	classes	are	now	ignored	
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0        

10       

110     	

0 16	 24	 32	bits	8	
Class	A,	224	addresses	

Class	B,	216	addresses	

Class	C,	28			addresses	

Network	por@on	 Host	por@on	



IP	Forwarding	
•  All	addresses	on	one	network	belong	to	the	same	prefix	
•  Node	uses	a	table	that	lists	the	next	hop	for	prefixes	
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D	
C	B	

A	

Prefix	 Next	Hop	
192.24.0.0/19	 D	
192.24.12.0/22	 B	



Longest	Matching	Prefix	
•  Prefixes	in	the	table	might	overlap!	

–  Combines	hierarchy	with	flexibility	

•  Longest	matching	prefix	forwarding	rule:	
–  For	each	packet,	find	the	longest	prefix	that	contains	the	
des@na@on	address,	i.e.,	the	most	specific	entry	

–  Forward	the	packet	to	the	next	hop	router	for	that	prefix	
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Longest	Matching	Prefix	(2)	
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Prefix	 Next	Hop	
192.24.0.0/19	 D	
192.24.12.0/22	 B	

192.24.0.0	

192.24.63.255	

/19	

/22	
192.24.12.0	

192.24.15.255	

IP	address	

192.24.6.0						à		
192.24.14.32		à	
192.24.54.0				à	

More		
specific	



Host/Router	Dis@nc@on	
•  In	the	Internet:	

–  Routers	do	the	rou@ng,	know	which	way	to	all	des@na@ons	
–  Hosts	send	remote	traffic	(out	of	prefix)	to	nearest	router	
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It’s	my	job	to	know	
which	way	to	go	…	

Not	for	my	network?	
Send	it	to	the	router	
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Host	Forwarding	Table	
•  Give	using	longest	matching	prefix	

–  0.0.0.0/0	is	a	default	route	that	
catches	all	IP	addresses	

Prefix	 Next	Hop	
My	network	prefix	 Send	to	that	IP	

0.0.0.0/0	 Send	to	my	router	
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Flexibility	of	Longest	Matching	Prefix	
•  Can	provide	default	behavior,							
with	less	specifics	
–  To	send	traffic	going	outside	an	
organiza@on	to	a	border	router	

•  Can	special	case	behavior,	with			
more	specifics	
–  For	performance,	economics,			
security,	…	
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Performance	of	Longest	Matching	Prefix	

•  Uses	hierarchy	for	a	compact	table	
–  Relies	on	use	of	large	prefixes	

•  Lookup	more	complex	than	table	
–  Used	to	be	a	concern	for	fast	routers	
–  Not	an	issue	in	prac@ce	these	days	
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Topic	
•  Filling	in	the	gaps	we	need	to	make	
for	IP	forwarding	work	in	prac@ce	
–  Getng	IP	addresses	(DHCP)	»	
– Mapping	IP	to	link	addresses	(ARP)	»	

What	link	layer	
address	do	I	use?	

What’s	my	IP?	
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Getng	IP	Addresses	
•  Problem:	

–  A	node	wakes	up	for	the	first	@me	…	
– What	is	its	IP	address?	What’s	the	IP	
address	of	its	router?	Etc.	

–  At	least	Ethernet	address	is	on	NIC	

Hey,	where	am	I?	
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Getng	IP	Addresses	(2)	
1.  Manual	configura@on	(old	days)	

–  Can’t	be	factory	set,	depends	on	use	
2.  A	protocol	for	automa@cally	

configuring	addresses	(DHCP)	»	
–  Shiks	burden	from	users	to	IT	folk	

Use	A.B.C.D	What’s	my	IP?	
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DHCP	
•  DHCP	(Dynamic	Host	Configura@on	

Protocol),	from	1993,	widely	used	

•  It	leases	IP	address	to	nodes	
•  Provides	other	parameters	too	

–  Network	prefix	
–  Address	of	local	router	
–  DNS	server,	@me	server,	etc.	
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DHCP	Protocol	Stack	
•  DHCP	is	a	client-server	applica@on	

–  Uses	UDP	ports	67,	68	

Ethernet	

IP	

UDP	

DHCP	
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DHCP	Addressing	
•  Bootstrap	issue:	

–  How	does	node	send	a	message	to	
DHCP	server	before	it	is	configured?	

•  Answer:	
–  Node	sends	broadcast	messages	that	
delivered	to	all	nodes	on	the	network	

–  Broadcast	address	is	all	1s	
–  IP	(32	bit):	255.255.255.255	
–  Ethernet	(48	bit):	ff:ff:ff:ff:ff:ff	
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DHCP	Messages	
Client	 Server	

One	link	
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DHCP	Messages	(2)	
Client	 Server	

DISCOVER	

REQUEST	

OFFER	

ACK	

Broadcast	
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DHCP	Messages	(3)	
•  To	renew	an	exis@ng	lease,	an	
abbreviated	sequence	is	used:	
–  REQUEST,	followed	by	ACK	

•  Protocol	also	supports	replicated	
servers	for	reliability	
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Sending	an	IP	Packet	
•  Problem:	

–  A	node	needs	Link	layer	addresses	to	
send	a	frame	over	the	local	link	

–  How	does	it	get	the	des@na@on	link	
address	from	a	des@na@on	IP	address?	

Uh	oh	…	 My	IP	is	1.2.3.4	
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ARP	(Address	Resolu@on	Protocol)	
•  Node	uses	to	map	a	local	IP	address	
to	its	Link	layer	addresses	

Source	
Ethernet	

Dest.	
Ethernet	

Source	
IP	

Dest.	
IP	 Payload	…	

Link	layer	

From	
DHCP	

From	
NIC	

From	ARP	
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ARP	Protocol	Stack	
•  ARP	sits	right	on	top	of	link	layer	

–  No	servers,	just	asks	node	with	target	
IP	to	iden@fy	itself	

–  	Uses	broadcast	to	reach	all	nodes	

Ethernet	

ARP	
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ARP	Messages	
Node	 Target	

One	link		
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ARP	Messages	(2)	
Node	 Target	

REQUEST	 Broadcast	
Who	has	IP	1.2.3.4?	

REPLY	

I	do	at	1:2:3:4:5:6	
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Discovery	Protocols	
•  Help	nodes	find	each	other	

– There	are	more	of	them!	
•  E.g.,	zeroconf,	Bonjour	

•  Oken	involve	broadcast	
– Since	nodes	aren’t	introduced	
– Very	handy	glue		
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Topic	
•  IP	version	6,	the	future	of	IPv4	that	
is	now	(s@ll)	being	deployed	

Why	do	I	want	IPv6	again?	
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•  At	least	a	billion	
Internet	hosts	and	
growing	…	

•  And	we’re	using	
32-bit	addresses!	

Internet	Growth	



The	End	of	New	IPv4	Addresses	
•  Now	running	on	lekover	blocks	held	by	the	regional	
registries;	much	@ghter	alloca@on	policies	
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IANA	
(All	IPs)	

ARIN		
(US,	Canada)	

APNIC	
(Asia	Pacific)	

RIPE	
(Europe)	
LACNIC	

(La@n	Amer.)	
AfriNIC	
(Africa)	

ISPs	

Companies	

Exhausted	
on	2/11!	 End	of	the	world	?	12/21/12?	

Exhausted	
on	4/11	
and	9/12!	
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IP	Version	6	to	the	Rescue	
•  Effort	started	by	the	IETF	in	1994	

–  Much	larger	addresses	(128	bits)	
–  Many	sundry	improvements	

•  Became	an	IETF	standard	in	1998	
–  Nothing	much	happened	for	a	decade	
–  Hampered	by	deployment	issues,	and	a	
lack	of	adop@on	incen@ves		

–  Big	push	~2011	as	exhaus@on	looms	



IPv6	Deployment	
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Time	for	
growth!	

Source:	Google	IPv6	Sta@s@cs,	30/1/13	

Percentage	of	users	accessing	Google	via	IPv6	
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IPv6	
•  Features	large	addresses	

–  128	bits,	most	of	header	

•  New	nota@on	
–  8	groups	of	4	hex	digits	(16	bits)	
–  Omit	leading	zeros,	groups	of	zeros	

	Ex:			2001:0db8:0000:0000:0000:ff00:0042:8329	
		à	 			

32	bits	
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IPv6	(2)	
•  Lots	of	other,	smaller	changes	

–  Streamlined	header	processing	
–  Flow	label	to	group	of	packets	
–  Beper	fit	with	“advanced”	features	
(mobility,	mul@cas@ng,	security)	

32	bits	
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IPv6	Transi@on	
•  The	Big	Problem:	

–  How	to	deploy	IPv6?	
–  Fundamentally	incompa@ble	with	IPv4	

•  Dozens	of	approaches	proposed	
–  Dual	stack	(speak	IPv4	and	IPv6)	
–  Translators	(convert	packets)	
–  Tunnels	(carry	IPv6	over	IPv4)	»	



Tunneling		
•  Na@ve	IPv6	islands	connected	via	IPv4	

–  Tunnel	carries	IPv6	packets	across	IPv4	network	
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Tunneling	(2)	
•  Tunnel	acts	as	a	single	link	across	IPv4	network	
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User	 User	Tunnel	



Tunneling	(3)	
•  Tunnel	acts	as	a	single	link	across	IPv4	network	

–  Difficulty	is	to	set	up	tunnel	endpoints	and	rou@ng		
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IPv6	

Link	

User	 User	

IPv4	
Link	

IPv6	IPv6	

Link	

IPv6	

Link	
IPv4	
Link	

IPv6	 IPv6	

Link	

Na@ve	IPv4	Na@ve	IPv6	 Na@ve	IPv6	

Tunnel	
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Topic	
•  What	is	NAT	(Network	Address	
Transla@on)?	How	does	it	work?	
–  NAT	is	widely	used	at	the	edges	of	the	
network,	e.g.,	homes	

I’m	a	NAT	box	too!	

Internet	



Layering	Review	
•  Remember	how	layering	is	meant	to	work?	

– “Routers	don’t	look	beyond	the	IP	header.”	Well	…	
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TCP	

IP	

802.11	

App	

IP	

802.11	

IP	
Ethernet	

TCP	

IP	

802.11	

App	

IP	

802.11	

IP	
Ethernet	

Router	



Middleboxes	
•  Sit	“inside	the	network”	but	perform	“more	than	IP”	
processing	on	packets	to	add	new	func@onality	
–  NAT	box,	Firewall	/	Intrusion	Detec@on	System	
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TCP	

IP	

802.11	

App	

IP	

802.11	

IP	
Ethernet	

TCP	

IP	

802.11	

App	

IP	

802.11	

IP	
Ethernet	

Middlebox	

App	/	TCP	
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Middleboxes	(2)	
•  Advantages	

– A	possible	rapid	deployment	path	
when	there	is	no	other	op@on	

–  Control	over	many	hosts	(IT)	

•  Disadvantages	
–  Breaking	layering	interferes	with	
connec@vity;	strange	side	effects	

–  Poor	vantage	point	for	many	tasks	
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NAT	(Network	Address	Transla@on)	Box	
•  NAT	box	connects	an	internal	
network	to	an	external	network	
– Many	internal	hosts	are	connected	
using	few	external	addresses	

– Middlebox	that	“translates	addresses”	

•  Mo@vated	by	IP	address	scarcity	
–  Controversial	at	first,	now	accepted	
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NAT	(2)	
•  Common	scenario:	

–  Home	computers	use	“private”	IP	addresses	
–  NAT	(in	AP/firewall)	connects	home	to	ISP	

using	a	single	external	IP	address	

ISP	

Unmodified	computers	at	home	 Looks	like	one		
computer	outside	

NAT	box	
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How	NAT	Works	
•  Keeps	an	internal/external	table	

–  Typically	uses	IP	address	+	TCP	port	
–  This	is	address	and	port	transla@on	

	
	

•  Need	ports	to	make	mapping	1-1					
since	there	are	fewer	external	IPs	

Internal  IP:port External  IP : port 
192.168.1.12 : 5523 44.25.80.3 : 1500 
192.168.1.13 : 1234 44.25.80.3 : 1501 
192.168.2.20 : 1234 44.25.80.3 : 1502 

What	ISP	thinks	What	host	thinks	



How	NAT	Works	(2)	
•  Internal	à	External:	

–  Look	up	and	rewrite	Source	IP/port	
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Internal  IP:port External  IP : port 
192.168.1.12 : 5523 44.25.80.3 : 1500 

NAT	box	

External		
des@na@on	
IP=X,	port=Y	

Internal	
source	

Src	=	
Dst	=	

Src	=	
Dst	=	



How	NAT	Works	(3)	
•  External	à	Internal	

–  Look	up	and	rewrite	Des@na@on	IP/port	
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Internal  IP:port External  IP : port 
192.168.1.12 : 5523 44.25.80.3 : 1500 

NAT	box	

External		
source	

IP=X,	port=Y	
Internal	

des@na@on	

Src	=	
Dst	=	

Src	=	
Dst	=	



How	NAT	Works	(4)	
•  Need	to	enter	transla@ons	in	the	table	for	it	to	work	

–  Create	external	name	when	host	makes	a	TCP	connec@on	
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Internal  IP:port External  IP : port 
192.168.1.12 : 5523 

NAT	box	

External		
des@na@on	
IP=X,	port=Y	

Internal	
source	

Src	=	
Dst	=	

Src	=	
Dst	=	
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NAT	Downsides	
•  Connec@vity	has	been	broken!	

–  Can	only	send	incoming	packets	aker	
an	outgoing	connec@on	is	set	up	

–  Difficult	to	run	servers	or	peer-to-peer	
apps	(Skype)	at	home		

•  Doesn’t	work	so	well	when	there	are	
no	connec@ons	(UDP	apps)	

•  Breaks	apps	that	unwisely	expose	
their	IP	addresses	(FTP)	
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NAT	Upsides	
•  Relieves	much	IP	address	pressure	

– Many	home	hosts	behind	NATs	
•  Easy	to	deploy	

–  Rapidly,	and	by	you	alone	
•  Useful	func@onality	

–  Firewall,	helps	with	privacy	

•  Kinks	will	get	worked	out	eventually	
–  “NAT	Traversal”	for	incoming	traffic	
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Topic	
•  Defining	“best”	paths	with	link	costs	

–  These	are	shortest	path	routes	

Best?	

A	 B	

C	

D	

E	

F	

G	

H	
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What	are	“Best”	paths	anyhow?	
•  Many	possibili@es:	

–  Latency,	avoid	circuitous	paths	
–  Bandwidth,	avoid	slow	links	
– Money,	avoid	expensive	links	
–  Hops,	to	reduce	switching	

•  But	only	consider	topology	
–  Ignore	workload,	e.g.,	hotspots	

A	 B	

C	

D	

E	

F	

G	

H	



CSE	461	University	of	Washington	 94	

Shortest	Paths	
We’ll	approximate	“best”	by	a	cost	
func@on	that	captures	the	factors	

–  Oken	call	lowest	“shortest”	

1.  Assign	each	link	a	cost	(distance)	
2.  Define	best	path	between	each					

pair	of	nodes	as	the	path	that	has		
the	lowest	total	cost	(or	is	shortest)	

3.  Pick	randomly	to	any	break	@es	
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Shortest	Paths	(2)	
•  Find	the	shortest	path	A	à	E	

	 		
•  All	links	are	bidirec@onal,	with	
equal	costs	in	each	direc@on	
–  Can	extend	model	to	unequal									
costs	if	needed	

A	 B	

C	

D	

E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	

3	

3	
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Shortest	Paths	(3)	
•  ABCE	is	a	shortest	path	
•  dist(ABCE)	=	4	+	2	+	1	=	7	

•  This	is	less	than:	
–  dist(ABE)	=	8	
–  dist(ABFE)	=	9	
–  dist(AE)	=	10	
–  dist(ABCDE)	=	10	

A	 B	

C	

D	

E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	

3	

3	
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Shortest	Paths	(4)	
•  Op@mality	property:	

– Subpaths	of	shortest	paths																
are	also	shortest	paths		

•  ABCE	is	a	shortest	path	
àSo	are	ABC,	AB,	BCE,	BC,	CE	

A	 B	

C	

D	

E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	

3	

3	
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Sink	Trees	
•  Sink	tree	for	a	des@na@on	is									
the	union	of	all	shortest	paths				
towards	the	des@na@on	
–  Similarly	source	tree	

•  Find	the	sink	tree	for	E	
A	 B	

C	

D	

E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	

3	

3	



CSE	461	University	of	Washington	 99	

Sink	Trees	(2)	
•  Implica@ons:	

–  Only	need	to	use	des@na@on															
to	follow	shortest	paths	

–  Each	node	only	need	to	send															
to	the	next	hop	

•  Forwarding	table	at	a	node	
–  Lists	next	hop	for	each	des@na@on	
–  Rou@ng	table	may	know	more	

A	 B	

C	

D	

E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	

3	

3	
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Topic	
•  How	to	compute	shortest	paths		
given	the	network	topology	
– With	Dijkstra’s	algorithm	

Source	tree	
for	E	

A	 B	

C	

D	

E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	
3	

3	
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Edsger	W.	Dijkstra	(1930-2002)	
•  Famous	computer	scien@st	

–  Programming	languages	
–  Distributed	algorithms	
–  Program	verifica@on	

•  Dijkstra’s	algorithm,	1969	
–  Single-source	shortest	paths,	given	
network	with	non-nega@ve	link	costs	

By	Hamilton	Richards,	CC-BY-SA-3.0,	via	Wikimedia	Commons	
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Dijkstra’s	Algorithm	
Algorithm:	
•  Mark	all	nodes	tenta@ve,	set	distances	

from	source	to	0	(zero)	for	source,	and	
∞	(infinity)	for	all	other	nodes	

•  While	tenta@ve	nodes	remain:	
–  Extract	N,	a	node	with	lowest	distance	
–  Add	link	to	N	to	the	shortest	path	tree	
–  Relax	the	distances	of	neighbors	of		N	by	
lowering	any	beper	distance	es@mates	



Dijkstra’s	Algorithm	(2)	
•  Ini@aliza@on	
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A	 B	

C	

D	

E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	
3	

3	

0	 ∞	

∞	 ∞	

∞	

∞	

∞	

We’ll	compute	
shortest	paths	

from	A	 ∞	



Dijkstra’s	Algorithm	(3)	
•  Relax	around	A	

CSE	461	University	of	Washington	 104	

A	 B	

C	

D	

E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	
3	

3	

0	 ∞	

∞	 10	

4	

∞	

∞	
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Dijkstra’s	Algorithm	(4)	
•  Relax	around	B	
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A	 B	

C	

D	

E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	
3	

3	

0	 ∞	

8	

4	

Distance	fell!	

6	

7	

7	

∞	



Dijkstra’s	Algorithm	(5)	
•  Relax	around	C	
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A	 B	
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E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	
3	

3	

0	

7	

4	

Distance	fell	
again!	

6	

7	

7	

8	

9	



Dijkstra’s	Algorithm	(6)	
•  Relax	around	G	(say)	
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Dijkstra’s	Algorithm	(7)	
•  Relax	around	F	(say)	
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Dijkstra’s	Algorithm	(8)	
•  Relax	around	E	
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Dijkstra’s	Algorithm	(9)	
•  Relax	around	D	
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Dijkstra’s	Algorithm	(10)	
•  Finally,	H	…	done	
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Dijkstra	Comments	
•  Finds	shortest	paths	in	order	of	

increasing	distance	from	source	
–  Leverages	op@mality	property	

•  Run@me	depends	on	efficiency	of	
extrac@ng	min-cost	node	
–  Superlinear	in	network	size	(grows	fast)	

•  Gives	complete	source/sink	tree	
–  More	than	needed	for	forwarding!	
–  But	requires	complete	topology		
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Topic	
•  How	to	compute	shortest	paths		in	
a	distributed	network	
–  The	Distance	Vector	(DV)	approach	

Here’s	my	vector!	 Here’s	mine	
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Distance	Vector	Rou@ng	
•  Simple,	early	rou@ng	approach	

–  Used	in	ARPANET,	and	RIP	

•  One	of	two	main	approaches	to	rou@ng	
–  Distributed	version	of	Bellman-Ford	
–  Works,	but	very	slow	convergence						
aker	some	failures		

•  Link-state	algorithms	are	now					
typically	used	in	prac@ce	
–  More	involved,	beper	behavior	
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Distance	Vector	Setng	
Each	node	computes	its	forwarding	table												
in	a	distributed	setng:	

1.  Nodes	know	only	the	cost	to	their	
neighbors;	not	the	topology	

2.  Nodes	can	talk	only	to	their	neighbors		
using	messages	

3.  All	nodes	run	the	same	algorithm	
concurrently	

4.  Nodes	and	links	may	fail,	messages										
may	be	lost	
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Distance	Vector	Algorithm	
Each	node	maintains	a	vector	of	distances		
(and	next	hops)	to	all	des@na@ons	

	

1.  Ini@alize	vector	with	0	(zero)	cost	to	
self,	∞	(infinity)	to	other	des@na@ons	

2.  Periodically	send	vector	to	neighbors	
3.  Update	vector	for	each	des@na@on	by	

selec@ng	the	shortest	distance	heard,	
aker	adding	cost	of	neighbor	link	
–  Use	the	best	neighbor	for	forwarding	



Distance	Vector	(2)	
•  Consider	from	the	point	of	view	of	node	A	

–  Can	only	talk	to	nodes	B	and	E	
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Ini@al	
vector	



Distance	Vector	(3)	
•  First	exchange	with	B,	E;	learn	best	1-hop	routes	
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E 
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Learned	beper	route	



Distance	Vector	(4)	
•  Second	exchange;	learn	best	2-hop	routes	
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Distance	Vector	(4)	
•  Third	exchange;	learn	best	3-hop	routes	
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A	 B	

C	

D	

E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	
3	

3	

A’s 
Cost 

A’s 
Next 

0 -- 
4 B 
6 B 
8 B 
7 B 
7 B 
7 B 
9 B 

To B 
says 

E 
says 

A 4 8 
B 0 3 
C 2 1 
D 4 2 
E 3 0 
F 3 2 
G 3 6 
H 5 4 

B   
+4 

E 
+10 

8 18 
4 13 
6 11 
8 12 
7 10 
7 12 
7 16 
9 14 



Distance	Vector	(5)	
•  Subsequent	exchanges;	converged	
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A	 B	

C	

D	

E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	
3	

3	

A’s 
Cost 

A’s 
Next 

0 -- 
4 B 
6 B 
8 B 
8 B 
7 B 
7 B 
9 B 

To B 
says 

E 
says 

A 4 7 
B 0 3 
C 2 1 
D 4 2 
E 3 0 
F 3 2 
G 3 6 
H 5 4 

B   
+4 

E 
+10 

8 17 
4 13 
6 11 
8 12 
7 10 
7 12 
7 16 
9 14 
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Topic	
•  How	to	compute	shortest	paths		in	
a	distributed	network	
–  The	Link-State	(LS)	approach	

Flood!	 …	then	compute	
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Link-State	Rou@ng	
•  One	of	two	approaches	to	rou@ng	

–  Trades	more	computa@on	than	
distance	vector	for	beper	dynamics		

•  Widely	used	in	prac@ce	
–  Used	in	Internet/ARPANET	from	1979	
– Modern	networks	use	OSPF	and	IS-IS	
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Link-State	Setng	
Nodes	compute	their	forwarding	table	in	the	
same	distributed	setng	as	for	distance	vector:	

1.  Nodes	know	only	the	cost	to	their	
neighbors;	not	the	topology	

2.  Nodes	can	talk	only	to	their	neighbors		
using	messages	

3.  All	nodes	run	the	same	algorithm	
concurrently	

4.  Nodes/links	may	fail,	messages	may	be	lost	
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Link-State	Algorithm	
Proceeds	in	two	phases:	
1.  Nodes	flood	topology	in	the	form	

of	link	state	packets	
–  Each	node	learns	full	topology	

2.  Each	node	computes	its	own	
forwarding	table	

–  By	running	Dijkstra	(or	equivalent)	
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Phase	1:	Topology	Dissemina@on	
•  Each	node	floods	link	state	packet	
(LSP)	that	describes	their	por@on		
of	the	topology	

A	 B	

C	

D	

E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	
3	

3	

Seq. # 
A 10 
B 4 
C 1 
D 2 
F 2 

Node	E’s	LSP	
flooded	to	A,	B,	
C,	D,	and	F	
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Phase	2:	Route	Computa@on	
•  Each	node	has	full	topology	

–  By	combining	all	LSPs	

•  Each	node	simply	runs	Dijkstra	
–  Some	replicated	computa@on,	but						
finds	required	routes	directly	

–  Compile	forwarding	table	from	sink/
source	tree	

–  That’s	it	folks!	



Forwarding	Table	
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To Next 
A C 
B C 
C C 
D D 
E -- 
F F 
G F 
H C A	 B	

C	

D	

E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	
3	

3	

Source	Tree	for	E	(from	Dijkstra)	 E’s	Forwarding	Table	



Handling	Changes	
•  On	change,	flood	updated	LSPs,	and	re-compute	routes	

–  E.g.,	nodes	adjacent	to	failed	link	or	node	ini@ate	
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A	 B	

C	

D	

E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	
3	

3	

XXXX	Seq. # 
A 4 
C 2 
E 4 
F 3 
G ∞	

B’s	LSP	
Seq. # 

B 3 
E 2 
G ∞	

F’s	LSP	 Failure!	
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Handling	Changes	(2)	
•  Link	failure	

–  Both	nodes	no@ce,	send	updated	LSPs	
–  Link	is	removed	from	topology	

•  Node	failure	
–  All	neighbors	no@ce	a	link	has	failed	
–  Failed	node	can’t	update	its	own	LSP	
–  But	it	is	OK:	all	links	to	node	removed	
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Handling	Changes	(3)	
•  Addi@on	of	a	link	or	node	

–  Add	LSP	of	new	node	to	topology	
–  Old	LSPs	are	updated	with	new	link	

•  Addi@ons	are	the	easy	case	…	
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Link-State	Complica@ons	
•  Things	that	can	go	wrong:	

–  Seq.	number	reaches	max,	or	is	corrupted	
–  Node	crashes	and	loses	seq.	number	
–  Network	par@@ons	then	heals	

•  Strategy:	
–  Include	age	on	LSPs	and	forget	old	
informa@on	that	is	not	refreshed	

•  Much	of	the	complexity	is	due	to	
handling	corner	cases	(as	usual!)	



DV/LS	Comparison	
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Goal Distance Vector Link-State 

Correctness Distributed Bellman-Ford Replicated Dijkstra 

Efficient paths Approx. with shortest paths Approx. with shortest paths 

Fair paths Approx. with shortest paths Approx. with shortest paths 

Fast convergence Slow – many exchanges Fast – flood and compute 

Scalability Excellent – storage/compute Moderate – storage/compute 


