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Protocols	and	Layers	
•  Protocols	and	layering	is	the	main	
structuring	method	used	to	divide	
up	network	functionality	
–  Each	instance	of	a	protocol	talks	
virtually	to	its	peer	using	the	protocol	

–  Each	instance	of	a	protocol	uses	only	
the	services	of	the	lower	layer		



Protocols	and	Layers	(3)	
•  Protocols	are	horizontal,	layers	are	vertical	
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Protocols	and	Layers	(4)	
•  Set	of	protocols	in	use	is	called	a	protocol	stack	
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Protocols	and	Layers	(6)	
•  Protocols	you’ve	probably	heard	of:	

–  TCP,	IP,	802.11,	Ethernet,	HTTP,	SSL,	
DNS,	…	and	many	more	

•  An	example	protocol	stack	
–  Used	by	a	web	browser	on	a	host	that	
is	wirelessly	connected	to	the	Internet		

HTTP	

TCP	

IP	

802.11	

Browser	
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Encapsulation	
•  Encapsulation	is	the	mechanism	
used	to	effect	protocol	layering	
–  Lower	layer	wraps	higher	layer	
content,	adding	its	own	information	to	
make	a	new	message	for	delivery	

–  Like	sending	a	letter	in	an	envelope;	
postal	service	doesn’t	look	inside	



Encapsulation	(3)	
•  Message	“on	the	wire”	begins	to	look	like	an	onion	

–  Lower	layers	are	outermost	
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Encapsulation	(4)	
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Advantage	of	Layering	
•  Information	hiding	and	reuse	
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Advantage	of	Layering	(2)	
•  Information	hiding	and	reuse	

Computer	Networks	 10	

HTTP	

TCP	

IP	

802.11	

Browser	

HTTP	

TCP	

IP	

802.11	

Server	

HTTP	

TCP	

IP	

Ethernet	

Browser	

HTTP	

TCP	

IP	

Ethernet	

Server	

or	



Advantage	of	Layering	(3)	
•  Using	information	hiding	to	connect	different	systems	
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Advantage	of	Layering	(4)	
•  Using	information	hiding	to	connect	different	systems	
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Disadvantage	of	Layering	
•  ??	



Internet	Reference	Model	
•  A	four	layer	model	based	on	experience;	omits	some		
OSI	layers	and	uses	IP	as	the	network	layer.	
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4						Application				–	Programs	that	use	network	service	
	3						Transport							–	Provides	end-to-end	data	delivery	
	2						Internet 							–	Send	packets	over	multiple	networks	

1						Link 							–	Send	frames	over	a	link	



Internet	Reference	Model	(3)	
•  IP	is	the	“narrow	waist”	of	the	Internet	

–  Supports	many	different	links	below	and	apps	above	
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Layer-based	Names	(2)	
•  For	devices	in	the	network:	

Network	
Link	

Network	
Link	

Link	 Link	

Physical	 Physical	Repeater	(or	hub)	

Switch	(or	bridge)	

Router	
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Layer-based	Names	(3)	
•  For	devices	in	the	network:	

Proxy	or	
middlebox	
or	gateway	

Network	
Link	

Network	
Link	

App	
Transport	

App	
Transport	

But	they	all	
look	like	this!	
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Scope	of	the	Physical	Layer	
•  Concerns	how	signals	are	used	to	
transfer	message	bits	over	a	link	
– Wires	etc.	carry	analog	signals	
– We	want	to	send	digital	bits	

…10110	10110…	

Signal	



Simple	Link	Model	
•  We’ll	end	with	an	abstraction	of	a	physical	channel	

–  Rate	(or	bandwidth,	capacity,	speed)	in	bits/second	
–  Delay	in	seconds,	related	to	length	

•  Other	important	properties:	
– Whether	the	channel	is	broadcast,	and	its	error	rate	
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Delay	D,	Rate	R		

Message	



Message	Latency	
•  Latency	is	the	delay	to	send	a	message	over	a	link	

–  Transmission	delay:	time	to	put	M-bit	message	“on	the	wire”	

		

–  Propagation	delay:	time	for	bits	to	propagate	across	the	wire	

		

–  Combining	the	two	terms	we	have:			
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Message	Latency	(2)	
•  Latency	is	the	delay	to	send	a	message	over	a	link	

–  Transmission	delay:	time	to	put	M-bit	message	“on	the	wire”	

T-delay	=	M	(bits)	/	Rate	(bits/sec)	=	M/R	seconds	

–  Propagation	delay:	time	for	bits	to	propagate	across	the	wire	

P-delay	=	Length	/	speed	of	signals	=	Length	/	⅔c	=	D	seconds	

–  Combining	the	two	terms	we	have:				L	=	M/R	+	D	
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Metric	Units	
•  The	main	prefixes	we	use:	

	
	
	

•  Use	powers	of	10	for	rates,	2	for	storage	
–  1	Mbps	=	1,000,000	bps,	1	KB	=	210	bytes	

•  “B”	is	for	bytes,	“b”	is	for	bits	

Prefix Exp. prefix exp. 
K(ilo) 103 m(illi) 10-3 

M(ega) 106 µ(micro) 10-6 

G(iga) 109 n(ano) 10-9 
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Latency	Examples	(2)	
•  “Dialup”	with	a	telephone	modem:	

D	=	5	ms,	R	=	56	kbps,	M	=	1250	bytes	

L	=	5	ms	+	(1250x8)/(56	x	103)	sec	=	184	ms!	
	

•  Broadband	cross-country	link:	
D	=	50	ms,	R	=	10	Mbps,	M	=	1250	bytes	

L	=	50	ms	+	(1250x8)	/	(10	x	106)	sec	=	51	ms	

•  A	long	link	or	a	slow	rate	means	high	latency	
–  Often,	one	delay	component	dominates	
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Bandwidth-Delay	Product	
•  Messages	take	space	on	the	wire!		

	

•  The	amount	of	data	in	flight	is	the	
bandwidth-delay	(BD)	product	

	 	BD	=	R	x	D	
– Measure	in	bits,	or	in	messages	
–  Small	for	LANs,	big	for	“long	fat”	pipes	
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Bandwidth-Delay	Example	(2)	
•  Fiber	at	home,	cross-country		

R=40	Mbps,	D=50	ms	
BD		=	40	x	106	x	50	x	10-3	bits		

	=	2000	Kbit	
	=	250	KB	

•  	That’s	quite	a	lot	of	data															
“in	the	network”!	

110101000010111010101001011	



weights	of	harmonic	frequencies	
Signal	over	time	

=	

Frequency	Representation	
•  A	signal	over	time	can	be	represented	by	its	frequency	
components	(called	Fourier	analysis)	
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Lost!	

Effect	of	Less	Bandwidth	
•  Fewer	frequencies	(=less	bandwidth)	degrades	signal	
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Lost!	

27	

Lost!	
Bandwidth	



Signals	over	a	Wire	(2)	
•  Example:	
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2:	Attenuation:	

3:	Bandwidth:	

4:	Noise:	

Sent	signal	
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Signals	over	Wireless	
•  Signals	transmitted	on	a	carrier	
frequency,	like	fiber	

•  Travel	at	speed	of	light,	spread	out	
and	attenuate	faster	than	1/dist2	

•  Multiple	signals	on	the	same	
frequency	interfere	at	a	receiver	
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Signals	over	Wireless	(5)	
•  Various	other	effects	too!	

– Wireless	propagation	is	complex,	
depends	on	environment	

•  Some	key	effects	are	highly	
frequency	dependent,		
–  E.g.,	multipath	at	microwave	
frequencies	



Wireless	Multipath	
•  Signals	bounce	off	objects	and	take	multiple	paths	

–  Some	frequencies	attenuated	at	receiver,	varies	with	location	
– Messes	up	signal;	handled	with	sophisticated	methods	
(§2.5.3)		

31	



32	

Wireless	
•  Sender	radiates	signal	over	a	region	

–  In	many	directions,	unlike	a	wire,	to	
potentially	many	receivers	

–  Nearby	signals	(same	freq.)	interfere	
at	a	receiver;	need	to	coordinate	use	
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WiFi	

WiFi	



Wireless	(2)	
•  Microwave,	e.g.,	3G,	and	unlicensed	(ISM)	frequencies,	
e.g.,	WiFi,	are	widely	used	for	computer	networking	

34	

802.11	
b/g/n	

802.11a/g/n	
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Topic	
•  We’ve	talked	about	signals	
representing	bits.	How,	exactly?	
–  This	is	the	topic	of	modulation	

…10110	10110…	

Signal	



A	Simple	Modulation	
•  Let	a	high	voltage	(+V)	represent	a	1,	and	low	
voltage	(-V)	represent	a	0	
– This	is	called	NRZ	(Non-Return	to	Zero)	

36	

Bits	

NRZ	

0	 0	 1	 0	 1	 1	 1	 1	 0	 1	 0	 0	 0	 0	 1	 0	

+V	

-V	



A	Simple	Modulation	(2)	
•  Let	a	high	voltage	(+V)	represent	a	1,	and	low	
voltage	(-V)	represent	a	0	
– This	is	called	NRZ	(Non-Return	to	Zero)	
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Bits	

NRZ	

0	 0	 1	 0	 1	 1	 1	 1	 0	 1	 0	 0	 0	 0	 1	 0	

+V	

-V	



Modulation	
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NRZ	signal	of	bits	

Amplitude	shift	keying	

Frequency	shift	keying	

Phase	shift	keying	
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Key	Channel	Properties	
•  The	bandwidth	(B),	signal	strength	
(S),	and	noise	strength	(N)	
–  B	limits	the	rate	of	transitions	
–  S	and	N	limit	how	many	signal	levels	
we	can	distinguish	

Bandwidth	B	 Signal	S,	
Noise	N	
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Claude	Shannon	(1916-2001)	
•  Father	of	information	theory	

–  “A	Mathematical	Theory	of	
Communication”,	1948	

•  Fundamental	contributions	to	
digital	computers,	security,										
and	communications	

Credit:	Courtesy	MIT	Museum	

Electromechanical	mouse	
that	“solves”	mazes!	



Shannon	Capacity	
•  How	many	levels	we	can	distinguish	depends	on	S/N	

–  Or	SNR,	the	Signal-to-Noise	Ratio	
–  Note	noise	is	random,	hence	some	errors	

•  SNR	given	on	a	log-scale	in	deciBels:	
–  SNRdB	=		10log10(S/N)	

41	
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42	

Shannon	Capacity	(2)	
•  Shannon	limit	is	for	capacity	(C),	
the	maximum	information	carrying	
rate	of	the	channel:	

C	=	B	log2(1	+	S/(BN))	bits/sec	



Wired/Wireless	Perspective	
•  Wires,	and	Fiber	

– Engineer	link	to	have	requisite	SNR	and	B	
→ Can	fix	data	rate	

•  Wireless	
– Given	B,	but	SNR	varies	greatly,	e.g.,	up	to	60	dB!	
→ Can’t	design	for	worst	case,	must	adapt	data	rate	
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Wired/Wireless	Perspective	(2)	
•  Wires,	and	Fiber	

– Engineer	link	to	have	requisite	SNR	and	B	
→ Can	fix	data	rate	

•  Wireless	
– Given	B,	but	SNR	varies	greatly,	e.g.,	up	to	60	dB!	
→ Can’t	design	for	worst	case,	must	adapt	data	rate	
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Engineer	SNR	for	data	rate	

Adapt	data	rate	to	SNR	



Putting	it	all	together	–	DSL		
•  DSL	(Digital	Subscriber	Line)	is	widely	used	for	
broadband;	many	variants	offer	10s	of	Mbps	
–  Reuses	twisted	pair	telephone	line	to	the	home;	it	has	up	to		
~2	MHz	of	bandwidth	but	uses	only	the	lowest	~4	kHz	

45	



DSL	(2)		
•  DSL	uses	passband	modulation	(called	OFDM)	

–  Separate	bands	for	upstream	and	downstream	(larger)	
– Modulation	varies	both	amplitude	and	phase	(called	QAM)	
–  High	SNR,	up	to	15	bits/symbol,	low	SNR	only	1	bit/symbol	
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Upstream	 Downstream	

26	–	138	
kHz	

0-4	
kHz	 143	kHz	to	1.1	MHz	

Telephone	

Freq.	

Voice	 Up	to	1	Mbps	 Up	to	12	Mbps	

ADSL2:	
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Topic	
•  Some	bits	will	be	received	in	error	due	

to	noise.	What	can	we	do?	
–  Detect	errors	with	codes	»	
–  Correct	errors	with	codes	»	
–  Retransmit	lost	frames	

•  Reliability	is	a	concern	that	cuts	
across	the	layers	–	we’ll	see	it	again	

Later	



Problem	–	Noise	may	flip	received	bits		
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Signal	
0	 0	 0	 0	

1	1	 1	
0	

0	 0	 0	 0	
1	1	 1	

0	

0	 0	 0	 0	
1	1	 1	

0	

Slightly	
Noisy	

Very	
noisy	



CSE	461	University	of	Washington	 49	

Approach	–	Add	Redundancy		
•  Error	detection	codes	

–  	Add	check	bits	to	the	message	bits	to	let	
some	errors	be	detected	

•  Error	correction	codes	
–  Add	more	check	bits	to	let	some	errors	be	
corrected	

•  Key	issue	is	now	to	structure	the	code	
to	detect	many	errors	with	few	check	
bits	and	modest	computation	



CSE	461	University	of	Washington	 50	

Motivating	Example	
•  A	simple	code	to	handle	errors:	

–  Send	two	copies!	Error	if	different.	
	

•  How	good	is	this	code?	
–  How	many	errors	can	it	detect/correct?	
–  How	many	errors	will	make	it	fail?	
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Motivating	Example	(2)	
•  We	want	to	handle	more	errors	
with	less	overhead	
– Will	look	at	better	codes;	they	are	
applied	mathematics	

–  But,	they	can’t	handle	all	errors	
–  And	they	focus	on	accidental	errors	
(will	look	at	secure	hashes	later)	
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Using	Error	Codes	
•  Codeword	consists	of	D	data	plus	R	

check	bits	(=systematic	block	code)	

•  Sender:		
–  Compute	R	check	bits	based	on	the	D	
data	bits;	send	the	codeword	of	D+R	bits	

D	 R=fn(D)	
Data	bits	 Check	bits	
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Using	Error	Codes	(2)	
•  Receiver:			

–  Receive	D+R	bits	with	unknown	errors	
–  Recompute	R	check	bits	based	on	the	
D	data	bits;	error	if	R	doesn’t	match	R’	

D	 R’	
Data	bits	 Check	bits	

R=fn(D)	
=?	
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Intuition	for	Error	Codes	
•  For	D	data	bits,	R	check	bits:	

	
	
	

•  Randomly	chosen	codeword	is	unlikely	
to	be	correct;	overhead	is	low	

All	
codewords	
Correct	

codewords	
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R.W.	Hamming	(1915-1998)	
•  Much	early	work	on	codes:	

–  “Error	Detecting	and	Error	Correcting	
Codes”,	BSTJ,	1950	

•  See	also:	
–  “You	and	Your	Research”,	1986	

Source:	IEEE	GHN,	©	2009	IEEE	
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Hamming	Distance	
•  Distance	is	the	number	of	bit	flips	
needed	to	change	D1	to	D2	

•  Hamming	distance	of	a	code	is	the	
minimum	distance	between	any	
pair	of	codewords	
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Hamming	Distance	(2)	
•  Error	detection:	

–  For	a	code	of	distance	d+1,	up	to	d	
errors	will	always	be	detected	
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Hamming	Distance	(3)	
•  Error	correction:	

–  For	a	code	of	distance	2d+1,	up	to	d	
errors	can	always	be	corrected	by	
mapping	to	the	closest	codeword	
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Topic	
•  Some	bits	may	be	received	in	error	

due	to	noise.	How	do	we	detect	this?	
–  Parity	»	
–  Checksums	»	
–  CRCs	»	

•  Detection	will	let	us	fix	the	error,	for	
example,	by	retransmission	(later).	
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Simple	Error	Detection	–	Parity	Bit	
•  Take	D	data	bits,	add	1	check	bit	
that	is	the	sum	of	the	D	bits	
–  Sum	is	modulo	2	or	XOR	
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Parity	Bit	(2)	
•  How	well	does	parity	work?	

– What	is	the	distance	of	the	code?	
		
–  How	many	errors	will	it	detect/
correct?	

		

•  What	about	larger	errors?	
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Checksums	
•  Idea:	sum	up	data	in	N-bit	words	

– Widely	used	in,	e.g.,	TCP/IP/UDP	

•  Stronger	protection	than	parity	

1500	bytes	 16	bits	
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Internet	Checksum	
•  Sum	is	defined	in	1s	complement	
arithmetic	(must	add	back	carries)	
–  And	it’s	the	negative	sum	

•  “The	checksum	field	is	the	16	bit	one's	
complement	of	the	one's	complement	
sum	of	all	16	bit	words	…”	–	RFC	791	
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Internet	Checksum	(2)	
Sending:	
1. Arrange	data	in	16-bit	words	

2. Put	zero	in	checksum	position,	add	
	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	(complement)	to	get	sum	

0001  
f203  
f4f5  
f6f7  

+(0000) 
------  
2ddf0  

 
ddf0  

+    2  
------  
ddf2  

 
220d  
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Internet	Checksum	(3)	
Sending:	
1. Arrange	data	in	16-bit	words	
2. Put	zero	in	checksum	position,	add	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	(complement)	to	get	sum	

0001  
f203  
f4f5  
f6f7  

+(0000) 
------  
2ddf0  

 
ddf0  

+    2  
------  
ddf2  

 
220d  
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Internet	Checksum	(4)	
Receiving:	
1. Arrange	data	in	16-bit	words	
2. Checksum	will	be	non-zero,	add	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	the	result	and	check	it	is	0	

0001  
f203  
f4f5  
f6f7  

+ 220d  
------  
2fffd  

  
fffd  

+    2  
------  
ffff  

 
   0000  
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Internet	Checksum	(5)	
Receiving:	
1. Arrange	data	in	16-bit	words	
2. Checksum	will	be	non-zero,	add	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	the	result	and	check	it	is	0	

0001  
f203  
f4f5  
f6f7  

+ 220d  
------  
2fffd  

  
fffd  

+    2  
------  
ffff  

 
   0000  
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Internet	Checksum	(6)	
•  How	well	does	the	checksum	work?	

– What	is	the	distance	of	the	code?	
–  How	many	errors	will	it	detect/
correct?	

		

•  What	about	larger	errors?	
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Cyclic	Redundancy	Check	(CRC)	
•  Even	stronger	protection	

–  Given	n	data	bits,	generate	k	check	
bits	such	that	the	n+k	bits	are	evenly	
divisible	by	a	generator	C		

•  Example	with	numbers:	
–  n	=	302,	k	=	one	digit,	C	=	3	
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CRCs	(2)	
•  The	catch:	

–  It’s	based	on	mathematics	of	finite	
fields,	in	which	“numbers”	
represent	polynomials	

–  e.g,	10011010	is	x7	+	x4	+	x3	+	x1		

•  What	this	means:	
– We	work	with	binary	values	and	
operate	using	modulo	2	arithmetic	
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CRCs	(3)	
•  Send	Procedure:	
1.  Extend	the	n	data	bits	with	k	zeros	
2.  Divide	by	the	generator	value	C	
3.  Keep	remainder,	ignore	quotient	
4.  Adjust	k	check	bits	by	remainder	

•  Receive	Procedure:	
1.  Divide	and	check	for	zero	remainder	



CRCs	(4)	
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Data	bits:	
1101011111	

	

Check	bits:	
C(x)=x4+x1+1	
C	=	10011	

k	=	4		
	

1	0	0	1	1	1		1		0		1		0		1		1		1		1		1		



CRCs	(5)	
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CRCs	(6)	
•  Protection	depend	on	generator	

–  Standard	CRC-32	is	10000010	
01100000	10001110	110110111	

		

•  Properties:	
–  HD=4,	detects	up	to	triple	bit	errors	
–  Also	odd	number	of	errors		
–  And	bursts	of	up	to	k	bits	in	error	
–  Not	vulnerable	to	systematic	errors	
like	checksums	
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Error	Detection	in	Practice	
•  CRCs	are	widely	used	on	links	

– Ethernet,	802.11,	ADSL,	Cable	…	
•  Checksum	used	in	Internet		

–  IP,	TCP,	UDP	…	but	it	is	weak	
•  Parity	

–  Is	little	used	
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Topic	
•  Some	bits	may	be	received	in	error	
due	to	noise.	How	do	we	fix	them?	
–  Hamming	code	»	
–  Other	codes	»	

•  And	why	should	we	use	detection	
when	we	can	use	correction?	
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Why	Error	Correction	is	Hard	
•  If	we	had	reliable	check	bits	we	
could	use	them	to	narrow	down		
the	position	of	the	error	
–  Then	correction	would	be	easy	

•  But	error	could	be	in	the	check			
bits	as	well	as	the	data	bits!	
–  Data	might	even	be	correct		
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Intuition	for	Error	Correcting	Code	
•  Suppose	we	construct	a	code	with	a	

Hamming	distance	of	at	least	3	
–  Need	≥3	bit	errors	to	change	one									
valid	codeword	into	another	

–  Single	bit	errors	will	be	closest	to	a		
unique	valid	codeword	

•  If	we	assume	errors	are	only	1	bit,				
we	can	correct	them	by	mapping	an	
error	to	the	closest	valid	codeword	
–  Works	for	d	errors	if	HD	≥	2d	+	1	
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Intuition	(2)	
•  Visualization	of	code:	

A

B

Valid	
codeword	

Error	
codeword	
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Intuition	(3)	
•  Visualization	of	code:	

A

B

Valid	
codeword	

Error	
codeword	

Single		
bit	error	
from	A	

Three	bit		
errors	to		
get	to	B	
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Hamming	Code	
•  Gives	a	method	for	constructing	a	
code	with	a	distance	of	3	
–  Uses	n	=	2k	–	k	–	1,	e.g.,	n=4,	k=3	
–  Put	check	bits	in	positions	p	that	are	
powers	of	2,	starting	with	position	1	

–  Check	bit	in	position	p	is	parity	of	
positions	with	a	p	term	in	their	values	

•  Plus	an	easy	way		to	correct	[soon]	
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Hamming	Code	(2)	
•  Example:	data=0101,	3	check	bits	

–  7	bit	code,	check	bit	positions	1,	2,	4	
–  Check	1	covers	positions	1,	3,	5,	7	
–  Check	2	covers	positions	2,	3,	6,	7	
–  Check	4	covers	positions	4,	5,	6,	7	

																			_		_		_		_		_		_		_	
	 1			2			3			4			5			6			7	
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Hamming	Code	(3)	
•  Example:	data=0101,	3	check	bits	

–  7	bit	code,	check	bit	positions	1,	2,	4	
–  Check	1	covers	positions	1,	3,	5,	7	
–  Check	2	covers	positions	2,	3,	6,	7	
–  Check	4	covers	positions	4,	5,	6,	7	

																		0		1		0		0		1		0		1	
	
p1=	0+1+1	=	0,		p2=	0+0+1	=	1,		p4=	1+0+1	=	0	

1			2			3			4			5			6			7	
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Hamming	Code	(4)	
•  To	decode:	

–  Recompute	check	bits	(with	parity	
sum	including	the	check	bit)	

–  Arrange	as	a	binary	number	
–  Value	(syndrome)	tells	error	position	
–  Value	of	zero	means	no	error	
–  Otherwise,	flip	bit	to	correct	
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Hamming	Code	(5)	
•  Example,	continued	

														0		1		0		0		1		0		1	
	
p1=																													p2=		
p4=			
	

Syndrome	=			
Data	=	

1			2			3			4			5			6			7	
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Hamming	Code	(6)	
•  Example,	continued	

														0		1		0		0		1		0		1	
	
p1=	0+0+1+1	=	0,			p2=	1+0+0+1	=	0,	
p4=	0+1+0+1	=	0	
	

Syndrome	=	000,	no	error	
Data	=	0	1	0	1	

1			2			3			4			5			6			7	
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Hamming	Code	(7)	
•  Example,	continued	

														0		1		0		0		1		1		1	
	
p1=																													p2=		
p4=			
	

Syndrome	=			
Data	=	

1			2			3			4			5			6			7	
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Hamming	Code	(8)	
•  Example,	continued	

														0		1		0		0		1		1		1	
	
p1=	0+0+1+1	=	0,			p2=	1+0+1+1	=	1,	
p4=	0+1+1+1	=	1	
	

Syndrome	=	1	1	0,	flip	position	6	
Data	=	0	1	0	1	(correct	after	flip!)	

1			2			3			4			5			6			7	
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Other	Error	Correction	Codes	
•  Codes	used	in	practice	are	much	
more	involved	than	Hamming	

•  Convolutional	codes	(§3.2.3)	
–  Take	a	stream	of	data	and	output	a	
mix	of	the	recent	input	bits	

– Makes	each	output	bit	less	fragile	
–  Decode	using	Viterbi	algorithm		
(which	can	use	bit	confidence	values)	
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Other	Codes	(2)	–	LDPC		
•  Low	Density	Parity	Check	(§3.2.3)	

–  LDPC	based	on	sparse	matrices	
–  Decoded	iteratively	using	a	belief	
propagation	algorithm	

–  State	of	the	art	today	
•  Invented	by	Robert	Gallager	in		
1963	as	part	of	his	PhD	thesis	
–  Promptly	forgotten	until	1996	…		

Source:	IEEE	GHN,	©	2009	IEEE	
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Detection	vs.	Correction	
•  Which	is	better	will	depend	on	the	
pattern	of	errors.	For	example:	
–  1000	bit	messages	with	a	bit	error	rate	
(BER)	of	1	in	10000	

•  Which	has	less	overhead?	
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Detection	vs.	Correction	
•  Which	is	better	will	depend	on	the	
pattern	of	errors.	For	example:	
–  1000	bit	messages	with	a	bit	error	rate	
(BER)	of	1	in	10000	

•  Which	has	less	overhead?	
–  It	still	depends!	We	need	to	know	
more	about	the	errors	
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Detection	vs.	Correction	(2)	
1.  Assume	bit	errors	are	random	

–  Messages	have	0	or	maybe	1	error	

•  Error	correction:		
–  Need	~10	check	bits	per	message	
–  Overhead:	

•  Error	detection:		
–  Need	~1	check	bits	per	message	plus	1000	bit	

retransmission	1/10	of	the	time	
–  Overhead:	
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Detection	vs.	Correction	(3)	
2.  Assume	errors	come	in	bursts	of	100	

–  Only	1	or	2	messages	in	1000	have	errors	

•  Error	correction:		
–  Need	>>100	check	bits	per	message	
–  Overhead:	

•  Error	detection:		
–  Need	32?	check	bits	per	message	plus	1000	

bit	resend	2/1000	of	the	time	
–  Overhead:	
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Detection	vs.	Correction	(4)	
•  Error	correction:		

– Needed	when	errors	are	expected	
– Or	when	no	time	for	retransmission	

•  Error	detection:		
– More	efficient	when	errors	are	not	
expected	

– And	when	errors	are	large	when	
they	do	occur	
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Error	Correction	in	Practice	
•  Heavily	used	in	physical	layer	

–  LDPC	is	the	future,	used	for	demanding	links	
like	802.11,	DVB,	WiMAX,	LTE,	power-line,	…	

–  Convolutional	codes	widely	used	in	practice	

•  Error	detection	(w/	retransmission)	is	used	in	
the	link	layer	and	above	for	residual	errors	

•  Correction	also	used	in	the	application	layer	
–  Called	Forward	Error	Correction	(FEC)	
–  Normally	with	an	erasure	error	model	
–  E.g.,	Reed-Solomon	(CDs,	DVDs,	etc.)	


