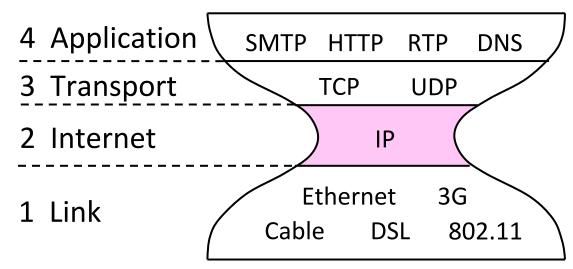
#### **Computer Networks and Mobile Systems**

Shyam Gollakota

## The Internet of Things

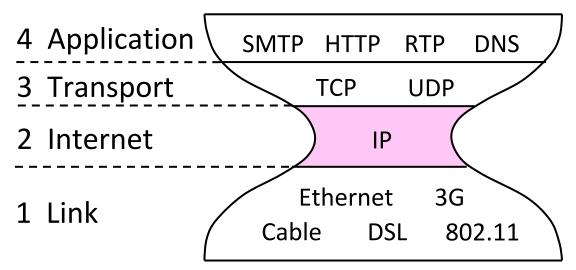
#### "The internet's next big frontier" - BBC 1/7/2013

- A look at how the Internet is becoming immersed in the physical world, not just communications
  - Backscatter and sensing


#### **Internet Reference Model**

- A four layer model based on experience; omits some OSI layers and uses IP as the network layer.
  - 4 Application
  - 3 Transport
  - 2 Internet
  - 1 | Link

- Programs that use network service
  - Provides end-to-end data delivery
  - Send packets over multiple networks
  - Send frames over a link


## Internet Reference Model (3)

- IP is the "narrow waist" of the Internet
  - Supports many different links below and apps above



## Internet Reference Model (3)

- IP is the "narrow waist" of the Internet
  - Supports many different links below and apps above



# **Cover Cutting Edge Research**

- PHY Layer: Backscatter, IOT
- Internet: Data Center, SDN
- Transport: DCTCP, Multipath-TCP
- Applications: Localization, Gesture recognition, SPDY, mobile system design, gaming design

#### **Class Structure**

• Go over each of the layer

• Go over the required background

• Read the latest papers on each topic

er Networks

#### **Class Structure**

• Go over each of the layer

• Go over the required background

- Read the latest papers on each topic
  - Questions to be answered before each class
  - We will cover 2-3 papers

#### Evaluation

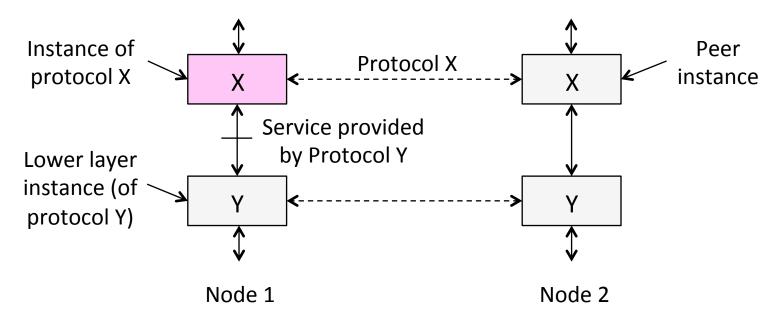
- Project 1,2,3 (10%,10%, 10%)
  - Create a communication system between two phones (Jan 31<sup>st</sup>)
  - Program a raspberry pi (Feb 10<sup>th</sup>)
  - Perform gesture recognition on smartphone (Feb 20<sup>th</sup>)
- Project 4 (40%)
  - Define and execute a research project (groups of 2)

• Paper presentations (30%)

#### **Course Webpage**

#### Cs.washington.edu/561

# **Cover Cutting Edge Research**


- Phy Layer: Backscatter, passive-wifi
- Internet: Data Center, SDN
- Transport: DCTCP, Multipath-TCP
- Applications: Localization, Gesture recognition, SPDY, mobile system design, gaming design

#### **Protocols and Layers**

- <u>Protocols</u> and <u>layering</u> is the main structuring method used to divide up network functionality
  - Each instance of a protocol talks virtually to its <u>peer</u> using the protocol
  - Each instance of a protocol uses only the services of the lower layer


## Protocols and Layers (3)

Protocols are horizontal, layers are vertical



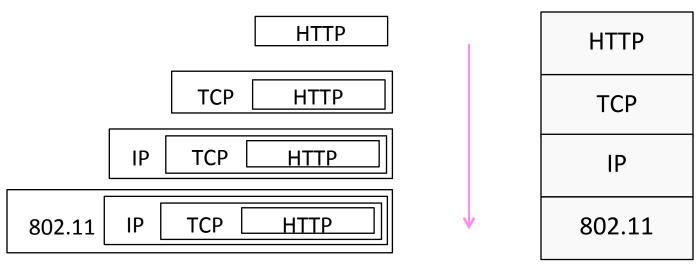
## Protocols and Layers (4)

Set of protocols in use is called a protocol stack

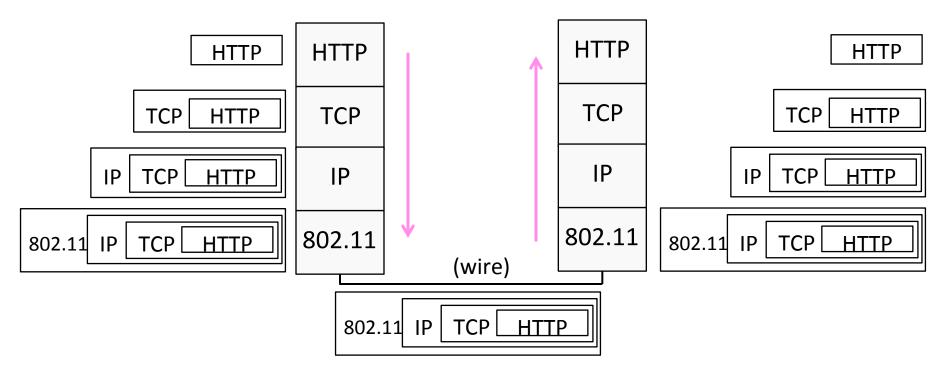


# Protocols and Layers (6)

- Protocols you've probably heard of:
  - TCP, IP, 802.11, Ethernet, HTTP, SSL,
    DNS, ... and many more
- An example protocol stack
  - Used by a web browser on a host that is wirelessly connected to the Internet

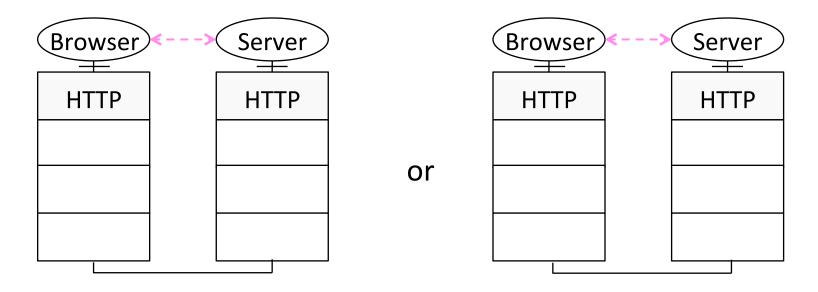

| ( | Browser |  |  |
|---|---------|--|--|
|   | HTTP    |  |  |
|   | ТСР     |  |  |
|   | IP      |  |  |
|   | 802.11  |  |  |
|   |         |  |  |

#### Encapsulation


- <u>Encapsulation</u> is the mechanism used to effect protocol layering
  - Lower layer wraps higher layer content, adding its own information to make a new message for delivery
  - Like sending a letter in an envelope; postal service doesn't look inside

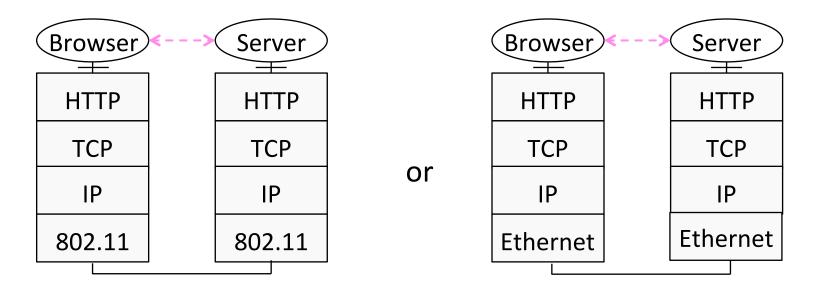
## Encapsulation (3)

- Message "on the wire" begins to look like an onion
  - Lower layers are outermost




#### **Encapsulation (4)**




## Advantage of Layering

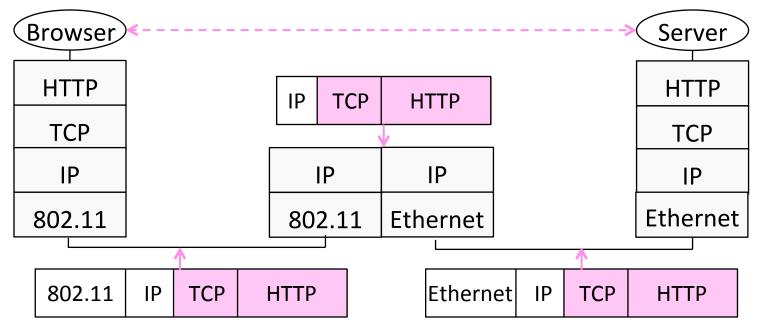
Information hiding and reuse



# Advantage of Layering (2)

Information hiding and reuse




# Advantage of Layering (3)

• Using information hiding to connect different systems



# Advantage of Layering (4)

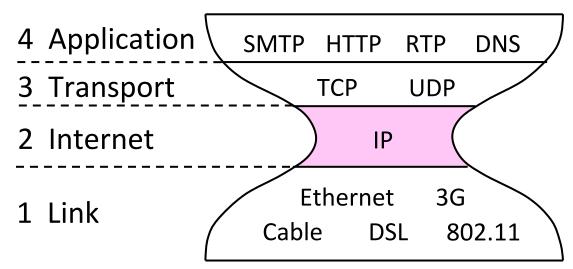
• Using information hiding to connect different systems



## Disadvantage of Layering

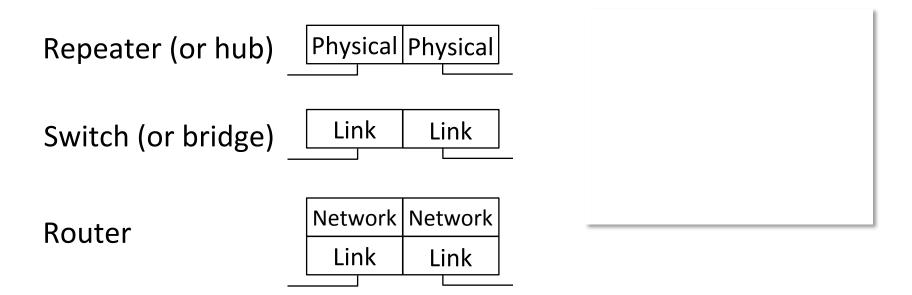





#### **Internet Reference Model**

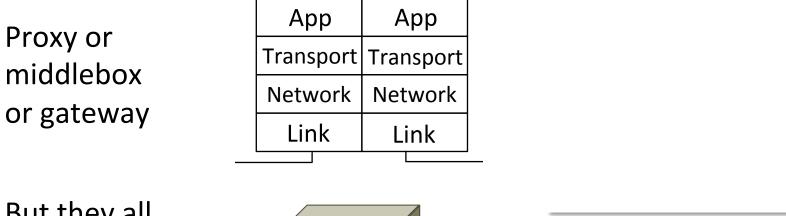
- A four layer model based on experience; omits some OSI layers and uses IP as the network layer.
  - 4 Application3 Transport
  - 2 Internet
  - 1 Link

- Programs that use network service
  - Provides end-to-end data delivery
  - Send packets over multiple networks
  - Send frames over a link


## Internet Reference Model (3)

- IP is the "narrow waist" of the Internet
  - Supports many different links below and apps above



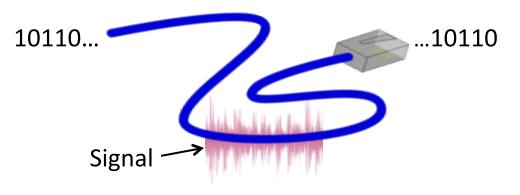

## Layer-based Names (2)

• For devices in the network:



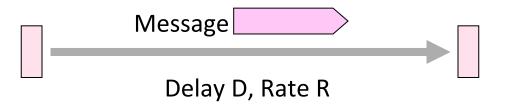
## Layer-based Names (3)

• For devices in the network:




But they all look like this!




# Scope of the Physical Layer

- Concerns how signals are used to transfer message bits over a link
  - Wires etc. carry analog signals
  - We want to send digital bits



# Simple Link Model

- We'll end with an abstraction of a physical channel
  - <u>Rate</u> (or bandwidth, capacity, speed) in bits/second
  - Delay in seconds, related to length



- Other important properties:
  - Whether the channel is broadcast, and its error rate

#### Message Latency

- Latency is the delay to send a message over a link
  - <u>Transmission delay</u>: time to put M-bit message "on the wire"

- <u>Propagation delay</u>: time for bits to propagate across the wire

Combining the two terms we have:

# Message Latency (2)

- <u>Latency</u> is the delay to send a message over a link
  - Transmission delay: time to put M-bit message "on the wire"

T-delay = M (bits) / Rate (bits/sec) = M/R seconds

- <u>Propagation delay</u>: time for bits to propagate across the wire

P-delay = Length / speed of signals = Length / <sup>2</sup>/<sub>3</sub>c = D seconds

- Combining the two terms we have: L = M/R + D

#### **Metric Units**

• The main prefixes we use:

| Prefix | Exp.            | prefix   | exp.             |
|--------|-----------------|----------|------------------|
| K(ilo) | 10 <sup>3</sup> | m(illi)  | 10 <sup>-3</sup> |
| M(ega) | 10 <sup>6</sup> | µ(micro) | 10 <sup>-6</sup> |
| G(iga) | 10 <sup>9</sup> | n(ano)   | 10 <sup>-9</sup> |

- Use powers of 10 for rates, 2 for storage
  - 1 Mbps = 1,000,000 bps, 1 KB = 2<sup>10</sup> bytes
- "B" is for bytes, "b" is for bits



# Latency Examples (2)

• "Dialup" with a telephone modem:

D = 5 ms, R = 56 kbps, M = 1250 bytes

- $L = 5 \text{ ms} + (1250 \text{ x8})/(56 \text{ x} 10^3) \text{ sec} = 184 \text{ ms}!$
- Broadband cross-country link:

D = 50 ms, R = 10 Mbps, M = 1250 bytes

 $L = 50 \text{ ms} + (1250 \text{ x8}) / (10 \text{ x} 10^6) \text{ sec} = 51 \text{ ms}$ 

- A long link or a slow rate means high latency
  - Often, one delay component dominates

### **Bandwidth-Delay Product**

• Messages take space on the wire!

• The amount of data in flight is the bandwidth-delay (BD) product

 $BD = R \times D$ 

- Measure in bits, or in messages
- Small for LANs, big for "long fat" pipes

## Bandwidth-Delay Example (2)

- Fiber at home, cross-country R=40 Mbps, D=50 ms BD =  $40 \times 10^6 \times 50 \times 10^{-3}$  bits = 2000 Kbit = 250 KB
- That's quite a lot of data "in the network"!