
Computer	Networks	
Shyam	Gollakota	

Computer	Networks	 2	

Protocols	and	Layers	
•  Protocols	and	layering	is	the	main	
structuring	method	used	to	divide	
up	network	func>onality	
–  Each	instance	of	a	protocol	talks	
virtually	to	its	peer	using	the	protocol	

–  Each	instance	of	a	protocol	uses	only	
the	services	of	the	lower	layer		

Protocols	and	Layers	(3)	
•  Protocols	are	horizontal,	layers	are	ver>cal	

Computer	Networks	 3	

X	

Y	Y	

X	
Instance	of	
protocol	X	

Peer	
instance	

Node	1	 Node	2	

Lower	layer	
instance	(of	
protocol	Y)	

Protocol	X	

Service	provided	
by	Protocol	Y	

Protocols	and	Layers	(4)	
•  Set	of	protocols	in	use	is	called	a	protocol	stack	

Computer	Networks	 4	

Computer	Networks	 5	

Protocols	and	Layers	(6)	
•  Protocols	you’ve	probably	heard	of:	

–  TCP,	IP,	802.11,	Ethernet,	HTTP,	SSL,	
DNS,	…	and	many	more	

•  An	example	protocol	stack	
–  Used	by	a	web	browser	on	a	host	that	
is	wirelessly	connected	to	the	Internet		

HTTP	

TCP	

IP	

802.11	

Browser	

Computer	Networks	 6	

Encapsula>on	
•  Encapsula>on	is	the	mechanism	
used	to	effect	protocol	layering	
–  Lower	layer	wraps	higher	layer	
content,	adding	its	own	informa>on	to	
make	a	new	message	for	delivery	

–  Like	sending	a	le[er	in	an	envelope;	
postal	service	doesn’t	look	inside	

Encapsula>on	(3)	
•  Message	“on	the	wire”	begins	to	look	like	an	onion	

–  Lower	layers	are	outermost	

Computer	Networks	 7	

HTTP	

TCP	

IP	

802.11	

HTTP	

TCP	 HTTP	

TCP	 HTTP	IP	

TCP	 HTTP	IP	802.11	

Encapsula>on	(4)	

Computer	Networks	 8	

HTTP	

TCP	

IP	

802.11	

HTTP	

TCP	 HTTP	

TCP	 HTTP	IP	

TCP	 HTTP	IP	802.11	

HTTP	

TCP	

IP	

802.11	
(wire)	

HTTP	

TCP	 HTTP	

TCP	 HTTP	IP	

TCP	 HTTP	IP	802.11	

TCP	 HTTP	IP	802.11	

Advantage	of	Layering	
•  Informa>on	hiding	and	reuse	

Computer	Networks	 9	

HTTP	

Browser	

HTTP	

Server	

HTTP	

Browser	

HTTP	

Server	

or	

Advantage	of	Layering	(2)	
•  Informa>on	hiding	and	reuse	

Computer	Networks	 10	

HTTP	

TCP	

IP	

802.11	

Browser	

HTTP	

TCP	

IP	

802.11	

Server	

HTTP	

TCP	

IP	

Ethernet	

Browser	

HTTP	

TCP	

IP	

Ethernet	

Server	

or	

Advantage	of	Layering	(3)	
•  Using	informa>on	hiding	to	connect	different	systems	

Computer	Networks	 11	

HTTP	

TCP	

IP	

802.11	

Browser	

HTTP	

TCP	

IP	
Ethernet	

Server	

Advantage	of	Layering	(4)	
•  Using	informa>on	hiding	to	connect	different	systems	

Computer	Networks	 12	

HTTP	

TCP	

IP	

802.11	

Browser	

IP	

802.11	

IP	

Ethernet	

HTTP	

TCP	

IP	
Ethernet	

Server	

IP	 TCP	 HTTP	

802.11	 IP	 TCP	 HTTP	 Ethernet	 IP	 TCP	 HTTP	

Computer	Networks	 13	

Disadvantage	of	Layering	
•  ??	

Internet	Reference	Model	
•  A	four	layer	model	based	on	experience;	omits	some		
OSI	layers	and	uses	IP	as	the	network	layer.	

	

Computer	Networks	 14	

4						Applica>on				–	Programs	that	use	network	service	
	3						Transport							–	Provides	end-to-end	data	delivery	
	2						Internet 							–	Send	packets	over	mul>ple	networks	

1						Link 							–	Send	frames	over	a	link	

Internet	Reference	Model	(3)	
•  IP	is	the	“narrow	waist”	of	the	Internet	

–  Supports	many	different	links	below	and	apps	above	

Computer	Networks	 15	

4		Applica>on	
3		Transport	

2		Internet	

1		Link	 Ethernet	
802.11	

IP	

TCP	 UDP	

HTTP	SMTP	 RTP	 DNS	

3G	
DSL	Cable	

Computer	Networks	 16	

Layer-based	Names	(2)	
•  For	devices	in	the	network:	

Network	
Link	

Network	
Link	

Link	 Link	

Physical	 Physical	Repeater	(or	hub)	

Switch	(or	bridge)	

Router	

Computer	Networks	 17	

Layer-based	Names	(3)	
•  For	devices	in	the	network:	

Proxy	or	
middlebox	
or	gateway	

Network	
Link	

Network	
Link	

App	
Transport	

App	
Transport	

But	they	all	
look	like	this!	

18	

Scope	of	the	Physical	Layer	
•  Concerns	how	signals	are	used	to	
transfer	message	bits	over	a	link	
– Wires	etc.	carry	analog	signals	
– We	want	to	send	digital	bits	

…10110	10110…	

Signal	

Simple	Link	Model	
•  We’ll	end	with	an	abstrac>on	of	a	physical	channel	

–  Rate	(or	bandwidth,	capacity,	speed)	in	bits/second	
–  Delay	in	seconds,	related	to	length	

•  Other	important	proper>es:	
– Whether	the	channel	is	broadcast,	and	its	error	rate	

CSE	461	University	of	Washington	 19	

Delay	D,	Rate	R		

Message	

Message	Latency	
•  Latency	is	the	delay	to	send	a	message	over	a	link	

–  Transmission	delay:	>me	to	put	M-bit	message	“on	the	wire”	

		

–  Propaga>on	delay:	>me	for	bits	to	propagate	across	the	wire	

		

–  Combining	the	two	terms	we	have:			

CSE	461	University	of	Washington	 20	

Message	Latency	(2)	
•  Latency	is	the	delay	to	send	a	message	over	a	link	

–  Transmission	delay:	>me	to	put	M-bit	message	“on	the	wire”	

T-delay	=	M	(bits)	/	Rate	(bits/sec)	=	M/R	seconds	

–  Propaga>on	delay:	>me	for	bits	to	propagate	across	the	wire	

P-delay	=	Length	/	speed	of	signals	=	Length	/	⅔c	=	D	seconds	

–  Combining	the	two	terms	we	have:				L	=	M/R	+	D	
	

CSE	461	University	of	Washington	 21	

CSE	461	University	of	Washington	 22	

Metric	Units	
•  The	main	prefixes	we	use:	

	
	
	

•  Use	powers	of	10	for	rates,	2	for	storage	
–  1	Mbps	=	1,000,000	bps,	1	KB	=	210	bytes	

•  “B”	is	for	bytes,	“b”	is	for	bits	

Prefix Exp. prefix exp.
K(ilo) 103 m(illi) 10-3

M(ega) 106 µ(micro) 10-6

G(iga) 109 n(ano) 10-9

CSE	461	University	of	Washington	 23	

Latency	Examples	(2)	
•  “Dialup”	with	a	telephone	modem:	

D	=	5	ms,	R	=	56	kbps,	M	=	1250	bytes	

L	=	5	ms	+	(1250x8)/(56	x	103)	sec	=	184	ms!	
	

•  Broadband	cross-country	link:	
D	=	50	ms,	R	=	10	Mbps,	M	=	1250	bytes	

L	=	50	ms	+	(1250x8)	/	(10	x	106)	sec	=	51	ms	

•  A	long	link	or	a	slow	rate	means	high	latency	
–  Open,	one	delay	component	dominates	

CSE	461	University	of	Washington	 24	

Bandwidth-Delay	Product	
•  Messages	take	space	on	the	wire!		

	

•  The	amount	of	data	in	flight	is	the	
bandwidth-delay	(BD)	product	

	 	BD	=	R	x	D	
– Measure	in	bits,	or	in	messages	
–  Small	for	LANs,	big	for	“long	fat”	pipes	

CSE	461	University	of	Washington	 25	

Bandwidth-Delay	Example	(2)	
•  Fiber	at	home,	cross-country		

R=40	Mbps,	D=50	ms	
BD		=	40	x	106	x	50	x	10-3	bits		

	=	2000	Kbit	
	=	250	KB	

•  	That’s	quite	a	lot	of	data															
“in	the	network”!	

110101000010111010101001011	

weights	of	harmonic	frequencies	
Signal	over	>me	

=	

Frequency	Representa>on	
•  A	signal	over	>me	can	be	represented	by	its	frequency	
components	(called	Fourier	analysis)	

26	
am

pl
itu

de
	

Lost!	

Effect	of	Less	Bandwidth	
•  Fewer	frequencies	(=less	bandwidth)	degrades	signal	

27	

Lost!	

27	

Lost!	
Bandwidth	

Signals	over	a	Wire	(2)	
•  Example:	

28	

2:	A[enua>on:	

3:	Bandwidth:	

4:	Noise:	

Sent	signal	

CSE	461	University	of	Washington	 29	

Signals	over	Wireless	
•  Signals	transmi[ed	on	a	carrier	
frequency,	like	fiber	

•  Travel	at	speed	of	light,	spread	out	
and	a[enuate	faster	than	1/dist2	

•  Mul>ple	signals	on	the	same	
frequency	interfere	at	a	receiver	

	

30	

Signals	over	Wireless	(5)	
•  Various	other	effects	too!	

– Wireless	propaga>on	is	complex,	
depends	on	environment	

•  Some	key	effects	are	highly	
frequency	dependent,		
–  E.g.,	mul>path	at	microwave	
frequencies	

Wireless	Mul>path	
•  Signals	bounce	off	objects	and	take	mul>ple	paths	

–  Some	frequencies	a[enuated	at	receiver,	varies	with	loca>on	
– Messes	up	signal;	handled	with	sophis>cated	methods	
(§2.5.3)		

31	

32	

Wireless	
•  Sender	radiates	signal	over	a	region	

–  In	many	direc>ons,	unlike	a	wire,	to	
poten>ally	many	receivers	

–  Nearby	signals	(same	freq.)	interfere	
at	a	receiver;	need	to	coordinate	use	

33	

WiFi	

WiFi	

Wireless	(2)	
•  Microwave,	e.g.,	3G,	and	unlicensed	(ISM)	frequencies,	
e.g.,	WiFi,	are	widely	used	for	computer	networking	

34	

802.11	
b/g/n	

802.11a/g/n	

35	

Topic	
•  We’ve	talked	about	signals	
represen>ng	bits.	How,	exactly?	
–  This	is	the	topic	of	modula>on	

…10110	10110…	

Signal	

A	Simple	Modula>on	
•  Let	a	high	voltage	(+V)	represent	a	1,	and	low	
voltage	(-V)	represent	a	0	
– This	is	called	NRZ	(Non-Return	to	Zero)	

36	

Bits	

NRZ	

0	 0	 1	 0	 1	 1	 1	 1	 0	 1	 0	 0	 0	 0	 1	 0	

+V	

-V	

A	Simple	Modula>on	(2)	
•  Let	a	high	voltage	(+V)	represent	a	1,	and	low	
voltage	(-V)	represent	a	0	
– This	is	called	NRZ	(Non-Return	to	Zero)	

37	

Bits	

NRZ	

0	 0	 1	 0	 1	 1	 1	 1	 0	 1	 0	 0	 0	 0	 1	 0	

+V	

-V	

Modula>on	

38	

NRZ	signal	of	bits	

Amplitude	ship	keying	

Frequency	ship	keying	

Phase	ship	keying	

39	

Topic	
•  How	rapidly	can	we	send	
informa>on	over	a	link?		
–  Nyquist	limit	(~1924)	»	
–  Shannon	capacity	(1948)	»	

•  Prac>cal	systems	are	devised									
to	approach	these	limits	

40	

Key	Channel	Proper>es	
•  The	bandwidth	(B),	signal	strength	
(S),	and	noise	strength	(N)	
–  B	limits	the	rate	of	transi>ons	
–  S	and	N	limit	how	many	signal	levels	
we	can	dis>nguish	

Bandwidth	B	 Signal	S,	
Noise	N	

41	

Nyquist	Limit	
•  The	maximum	symbol	rate	is	2B	

•  Thus	if	there	are	V	signal	levels,	
ignoring	noise,	the	maximum	bit	
rate	is:	 R	=	2B	log2V	bits/sec	

1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	

42	

Claude	Shannon	(1916-2001)	
•  Father	of	informa>on	theory	

–  “A	Mathema>cal	Theory	of	
Communica>on”,	1948	

•  Fundamental	contribu>ons	to	
digital	computers,	security,										
and	communica>ons	

Credit:	Courtesy	MIT	Museum	

Electromechanical	mouse	
that	“solves”	mazes!	

Shannon	Capacity	
•  How	many	levels	we	can	dis>nguish	depends	on	S/N	

–  Or	SNR,	the	Signal-to-Noise	Ra>o	
–  Note	noise	is	random,	hence	some	errors	

•  SNR	given	on	a	log-scale	in	deciBels:	
–  SNRdB	=		10log10(S/N)	

43	

0	

1	

2	

3	

N	

S+N	

44	

Shannon	Capacity	(2)	
•  Shannon	limit	is	for	capacity	(C),	
the	maximum	informa>on	carrying	
rate	of	the	channel:	

C	=	B	log2(1	+	S/(BN))	bits/sec	

Wired/Wireless	Perspec>ve	
•  Wires,	and	Fiber	

– Engineer	link	to	have	requisite	SNR	and	B	
→ Can	fix	data	rate	

•  Wireless	
– Given	B,	but	SNR	varies	greatly,	e.g.,	up	to	60	dB!	
→ Can’t	design	for	worst	case,	must	adapt	data	rate	

45	

Wired/Wireless	Perspec>ve	(2)	
•  Wires,	and	Fiber	

– Engineer	link	to	have	requisite	SNR	and	B	
→ Can	fix	data	rate	

•  Wireless	
– Given	B,	but	SNR	varies	greatly,	e.g.,	up	to	60	dB!	
→ Can’t	design	for	worst	case,	must	adapt	data	rate	

46	

Engineer	SNR	for	data	rate	

Adapt	data	rate	to	SNR	

Puzng	it	all	together	–	DSL		
•  DSL	(Digital	Subscriber	Line)	is	widely	used	for	
broadband;	many	variants	offer	10s	of	Mbps	
–  Reuses	twisted	pair	telephone	line	to	the	home;	it	has	up	to		
~2	MHz	of	bandwidth	but	uses	only	the	lowest	~4	kHz	

47	

DSL	(2)		
•  DSL	uses	passband	modula>on	(called	OFDM)	

–  Separate	bands	for	upstream	and	downstream	(larger)	
– Modula>on	varies	both	amplitude	and	phase	(called	QAM)	
–  High	SNR,	up	to	15	bits/symbol,	low	SNR	only	1	bit/symbol	
	

48	

Upstream	 Downstream	

26	–	138	
kHz	

0-4	
kHz	 143	kHz	to	1.1	MHz	

Telephone	

Freq.	

Voice	 Up	to	1	Mbps	 Up	to	12	Mbps	

ADSL2:	

CSE	461	University	of	Washington	 49	

Topic	
•  Some	bits	will	be	received	in	error	due	

to	noise.	What	can	we	do?	
–  Detect	errors	with	codes	»	
–  Correct	errors	with	codes	»	
–  Retransmit	lost	frames	

•  Reliability	is	a	concern	that	cuts	
across	the	layers	–	we’ll	see	it	again	

Later	

Problem	–	Noise	may	flip	received	bits		

CSE	461	University	of	Washington	 50	

Signal	
0	 0	 0	 0	

1	1	 1	
0	

0	 0	 0	 0	
1	1	 1	

0	

0	 0	 0	 0	
1	1	 1	

0	

Slightly	
Noisy	

Very	
noisy	

CSE	461	University	of	Washington	 51	

Approach	–	Add	Redundancy		
•  Error	detec>on	codes	

–  	Add	check	bits	to	the	message	bits	to	let	
some	errors	be	detected	

•  Error	correc>on	codes	
–  Add	more	check	bits	to	let	some	errors	be	
corrected	

•  Key	issue	is	now	to	structure	the	code	
to	detect	many	errors	with	few	check	
bits	and	modest	computa>on	

CSE	461	University	of	Washington	 52	

Mo>va>ng	Example	
•  A	simple	code	to	handle	errors:	

–  Send	two	copies!	Error	if	different.	
	

•  How	good	is	this	code?	
–  How	many	errors	can	it	detect/correct?	
–  How	many	errors	will	make	it	fail?	
				

CSE	461	University	of	Washington	 53	

Mo>va>ng	Example	(2)	
•  We	want	to	handle	more	errors	
with	less	overhead	
– Will	look	at	be[er	codes;	they	are	
applied	mathema>cs	

–  But,	they	can’t	handle	all	errors	
–  And	they	focus	on	accidental	errors	
(will	look	at	secure	hashes	later)	

CSE	461	University	of	Washington	 54	

Using	Error	Codes	
•  Codeword	consists	of	D	data	plus	R	

check	bits	(=systema>c	block	code)	

•  Sender:		
–  Compute	R	check	bits	based	on	the	D	
data	bits;	send	the	codeword	of	D+R	bits	

D	 R=fn(D)	
Data	bits	 Check	bits	

CSE	461	University	of	Washington	 55	

Using	Error	Codes	(2)	
•  Receiver:			

–  Receive	D+R	bits	with	unknown	errors	
–  Recompute	R	check	bits	based	on	the	
D	data	bits;	error	if	R	doesn’t	match	R’	

D	 R’	
Data	bits	 Check	bits	

R=fn(D)	
=?	

CSE	461	University	of	Washington	 56	

Intui>on	for	Error	Codes	
•  For	D	data	bits,	R	check	bits:	

	
	
	

•  Randomly	chosen	codeword	is	unlikely	
to	be	correct;	overhead	is	low	

All	
codewords	
Correct	

codewords	

CSE	461	University	of	Washington	 57	

R.W.	Hamming	(1915-1998)	
•  Much	early	work	on	codes:	

–  “Error	Detec>ng	and	Error	Correc>ng	
Codes”,	BSTJ,	1950	

•  See	also:	
–  “You	and	Your	Research”,	1986	

Source:	IEEE	GHN,	©	2009	IEEE	

CSE	461	University	of	Washington	 58	

Hamming	Distance	
•  Distance	is	the	number	of	bit	flips	
needed	to	change	D1	to	D2	

•  Hamming	distance	of	a	code	is	the	
minimum	distance	between	any	
pair	of	codewords	

CSE	461	University	of	Washington	 59	

Hamming	Distance	(2)	
•  Error	detec>on:	

–  For	a	code	of	distance	d+1,	up	to	d	
errors	will	always	be	detected	

CSE	461	University	of	Washington	 60	

Hamming	Distance	(3)	
•  Error	correc>on:	

–  For	a	code	of	distance	2d+1,	up	to	d	
errors	can	always	be	corrected	by	
mapping	to	the	closest	codeword	

CSE	461	University	of	Washington	 61	

Topic	
•  Some	bits	may	be	received	in	error	

due	to	noise.	How	do	we	detect	this?	
–  Parity	»	
–  Checksums	»	
–  CRCs	»	

•  Detec>on	will	let	us	fix	the	error,	for	
example,	by	retransmission	(later).	

CSE	461	University	of	Washington	 62	

Simple	Error	Detec>on	–	Parity	Bit	
•  Take	D	data	bits,	add	1	check	bit	
that	is	the	sum	of	the	D	bits	
–  Sum	is	modulo	2	or	XOR	

CSE	461	University	of	Washington	 63	

Parity	Bit	(2)	
•  How	well	does	parity	work?	

– What	is	the	distance	of	the	code?	
		
–  How	many	errors	will	it	detect/
correct?	

		

•  What	about	larger	errors?	
		

CSE	461	University	of	Washington	 64	

Checksums	
•  Idea:	sum	up	data	in	N-bit	words	

– Widely	used	in,	e.g.,	TCP/IP/UDP	

•  Stronger	protec>on	than	parity	

1500	bytes	 16	bits	

CSE	461	University	of	Washington	 65	

Internet	Checksum	
•  Sum	is	defined	in	1s	complement	
arithme>c	(must	add	back	carries)	
–  And	it’s	the	nega>ve	sum	

•  “The	checksum	field	is	the	16	bit	one's	
complement	of	the	one's	complement	
sum	of	all	16	bit	words	…”	–	RFC	791	

CSE	461	University	of	Washington	 66	

Internet	Checksum	(2)	
Sending:	
1. Arrange	data	in	16-bit	words	

2. Put	zero	in	checksum	posi>on,	add	
	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	(complement)	to	get	sum	

0001
f203
f4f5
f6f7

+(0000)

2ddf0

ddf0

+ 2

ddf2

220d

CSE	461	University	of	Washington	 67	

Internet	Checksum	(3)	
Sending:	
1. Arrange	data	in	16-bit	words	
2. Put	zero	in	checksum	posi>on,	add	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	(complement)	to	get	sum	

0001
f203
f4f5
f6f7

+(0000)

2ddf0

ddf0

+ 2

ddf2

220d

CSE	461	University	of	Washington	 68	

Internet	Checksum	(4)	
Receiving:	
1. Arrange	data	in	16-bit	words	
2. Checksum	will	be	non-zero,	add	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	the	result	and	check	it	is	0	

0001
f203
f4f5
f6f7

+ 220d

2fffd

fffd

+ 2

ffff

 0000

CSE	461	University	of	Washington	 69	

Internet	Checksum	(5)	
Receiving:	
1. Arrange	data	in	16-bit	words	
2. Checksum	will	be	non-zero,	add	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	the	result	and	check	it	is	0	

0001
f203
f4f5
f6f7

+ 220d

2fffd

fffd

+ 2

ffff

 0000

CSE	461	University	of	Washington	 70	

Internet	Checksum	(6)	
•  How	well	does	the	checksum	work?	

– What	is	the	distance	of	the	code?	
–  How	many	errors	will	it	detect/
correct?	

		

•  What	about	larger	errors?	
		

CSE	461	University	of	Washington	 71	

Cyclic	Redundancy	Check	(CRC)	
•  Even	stronger	protec>on	

–  Given	n	data	bits,	generate	k	check	
bits	such	that	the	n+k	bits	are	evenly	
divisible	by	a	generator	C		

•  Example	with	numbers:	
–  n	=	302,	k	=	one	digit,	C	=	3	

CSE	461	University	of	Washington	 72	

CRCs	(2)	
•  The	catch:	

–  It’s	based	on	mathema>cs	of	finite	
fields,	in	which	“numbers”	
represent	polynomials	

–  e.g,	10011010	is	x7	+	x4	+	x3	+	x1		

•  What	this	means:	
– We	work	with	binary	values	and	
operate	using	modulo	2	arithme>c	

CSE	461	University	of	Washington	 73	

CRCs	(3)	
•  Send	Procedure:	
1.  Extend	the	n	data	bits	with	k	zeros	
2.  Divide	by	the	generator	value	C	
3.  Keep	remainder,	ignore	quo>ent	
4.  Adjust	k	check	bits	by	remainder	

•  Receive	Procedure:	
1.  Divide	and	check	for	zero	remainder	

CRCs	(4)	

CSE	461	University	of	Washington	 74	

Data	bits:	
1101011111	

	

Check	bits:	
C(x)=x4+x1+1	
C	=	10011	

k	=	4		
	

1	0	0	1	1	1		1		0		1		0		1		1		1		1		1		

CRCs	(5)	

CSE	461	University	of	Washington	 75	

CSE	461	University	of	Washington	 76	

CRCs	(6)	
•  Protec>on	depend	on	generator	

–  Standard	CRC-32	is	10000010	
01100000	10001110	110110111	

		

•  Proper>es:	
–  HD=4,	detects	up	to	triple	bit	errors	
–  Also	odd	number	of	errors		
–  And	bursts	of	up	to	k	bits	in	error	
–  Not	vulnerable	to	systema>c	errors	
like	checksums	

CSE	461	University	of	Washington	 77	

Error	Detec>on	in	Prac>ce	
•  CRCs	are	widely	used	on	links	

– Ethernet,	802.11,	ADSL,	Cable	…	
•  Checksum	used	in	Internet		

–  IP,	TCP,	UDP	…	but	it	is	weak	
•  Parity	

–  Is	li[le	used	

CSE	461	University	of	Washington	 78	

Topic	
•  Two	strategies	to	handle	errors:	
1.  Detect	errors	and	retransmit	frame	

(Automa>c	Repeat	reQuest,	ARQ)	

2.  Correct	errors	with	an	error								
correc>ng	code	

Done	this	

CSE	461	University	of	Washington	 79	

Context	on	Reliability	
•  Where	in	the	stack	should	we			
place	reliability	func>ons?	

Physical	
Link	

Network	
Transport	
Applica>on	

CSE	461	University	of	Washington	 80	

Context	on	Reliability	(2)	
•  Everywhere!	It	is	a	key	issue	

–  Different	layers	contribute	differently	

Physical	
Link	

Network	
Transport	
Applica>on	

Recover	ac>ons	
(correctness)	

Mask	errors	
(performance	op>miza>on)	

CSE	461	University	of	Washington	 81	

ARQ	
•  ARQ	open	used	when	errors	are	
common	or	must	be	corrected	
–  E.g.,	WiFi,	and	TCP	(later)	

•  Rules	at	sender	and	receiver:	
–  Receiver	automa>cally	acknowledges	
correct	frames	with	an	ACK	

–  Sender	automa>cally	resends	aper	a	
>meout,	un>l	an	ACK	is	received	

CSE	461	University	of	Washington	 82	

ARQ	(2)	
•  Normal	opera>on	(no	loss)	

Frame	

ACK	
Timeout	 Time	

Sender	 Receiver	

CSE	461	University	of	Washington	 83	

ARQ	(3)	
•  Loss	and	retransmission	

Frame	

Timeout	 Time	

Sender	 Receiver	

Frame	

ACK	

X	

CSE	461	University	of	Washington	 84	

So	What’s	Tricky	About	ARQ?	
•  Two	non-trivial	issues:	

–  How	long	to	set	the	>meout?	»	
–  How	to	avoid	accep>ng	duplicate	
frames	as	new	frames	»	

•  Want	performance	in	the	common	
case	and	correctness	always	

CSE	461	University	of	Washington	 85	

Timeouts	
•  Timeout	should	be:	

–  Not	too	big	(link	goes	idle)	
–  Not	too	small	(spurious	resend)	

•  Fairly	easy	on	a	LAN	
–  Clear	worst	case,	li[le	varia>on	

•  Fairly	difficult	over	the	Internet	
– Much	varia>on,	no	obvious	bound	
– We’ll	revisit	this	with	TCP	(later)	

CSE	461	University	of	Washington	 86	

Duplicates	
•  What	happens	if	an	ACK	is	lost?	

X	

Frame	

ACK	Timeout	

Sender	 Receiver	

New	
Frame?	

CSE	461	University	of	Washington	 87	

Duplicates	(2)	
•  What	happens	if	an	ACK	is	lost?	

Frame	

ACK	

X	

Frame	

ACK	Timeout	

Sender	 Receiver	

New	
Frame?	

New		
Frame??	

CSE	461	University	of	Washington	 88	

Duplicates	(3)	
•  Or	the	>meout	is	early?	

ACK	

Frame	

Timeout	

Sender	 Receiver	

New	
Frame?	

CSE	461	University	of	Washington	 89	

Duplicates	(4)	
•  Or	the	>meout	is	early?	

Frame	

ACK	

Frame	

ACK	

Timeout	

Sender	 Receiver	

New	
Frame?	

New		
Frame??	

CSE	461	University	of	Washington	 90	

Sequence	Numbers	
•  Frames	and	ACKs	must	both	carry	
sequence	numbers	for	correctness	

•  To	dis>nguish	the	current	frame	
from	the	next	one,	a	single	bit	(two	
numbers)	is	sufficient	
–  Called	Stop-and-Wait	

CSE	461	University	of	Washington	 91	

Stop-and-Wait	
•  In	the	normal	case:	

Time	

Sender	 Receiver	

CSE	461	University	of	Washington	 92	

Stop-and-Wait	(2)	
•  In	the	normal	case:	

Frame	0	

ACK	0	Timeout	 Time	

Sender	 Receiver	

Frame	1	

ACK	1	

CSE	461	University	of	Washington	 93	

Stop-and-Wait	(3)	
•  With	ACK	loss:	

X	

Frame	0	

ACK	0	Timeout	

Sender	 Receiver	

New	
Frame?	

CSE	461	University	of	Washington	 94	

Stop-and-Wait	(4)	
•  With	ACK	loss:	

Frame	0	

ACK	0	

X	

Frame	0	

ACK	0	Timeout	

Sender	 Receiver	

New	
Frame?	

It’s	a		
Resend!	

CSE	461	University	of	Washington	 95	

Stop-and-Wait	(5)	
•  With	early	>meout:	

ACK	0	

Frame	0	

Timeout	

Sender	 Receiver	

New	
Frame?	

CSE	461	University	of	Washington	 96	

Stop-and-Wait	(6)	
•  With	early	>meout:	

Frame	0	

ACK	0	

Frame	0	

ACK	0	

Timeout	

Sender	 Receiver	

New	
Frame?	

It’s	a	
Resend	

OK	…	

CSE	461	University	of	Washington	 97	

Limita>on	of	Stop-and-Wait	
•  It	allows	only	a	single	frame	to	be	
outstanding	from	the	sender:	
–  Good	for	LAN,	not	efficient	for	high	BD	

•  Ex:	R=1	Mbps,	D	=	50	ms	
–  How	many	frames/sec?	If	R=10	Mbps?	

CSE	461	University	of	Washington	 98	

Sliding	Window	
•  Generaliza>on	of	stop-and-wait	

–  Allows	W	frames	to	be	outstanding	
–  Can	send	W	frames	per	RTT	(=2D)	

–  Various	op>ons	for	numbering	
frames/ACKs	and	handling	loss	

•  Will	look	at	along	with	TCP	(later)	

