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Protocols	and	Layers	
•  Protocols	and	layering	is	the	main	
structuring	method	used	to	divide	
up	network	func>onality	
–  Each	instance	of	a	protocol	talks	
virtually	to	its	peer	using	the	protocol	

–  Each	instance	of	a	protocol	uses	only	
the	services	of	the	lower	layer		



Protocols	and	Layers	(3)	
•  Protocols	are	horizontal,	layers	are	ver>cal	
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Protocols	and	Layers	(4)	
•  Set	of	protocols	in	use	is	called	a	protocol	stack	

Computer	Networks	 4	



Computer	Networks	 5	

Protocols	and	Layers	(6)	
•  Protocols	you’ve	probably	heard	of:	

–  TCP,	IP,	802.11,	Ethernet,	HTTP,	SSL,	
DNS,	…	and	many	more	

•  An	example	protocol	stack	
–  Used	by	a	web	browser	on	a	host	that	
is	wirelessly	connected	to	the	Internet		

HTTP	

TCP	

IP	

802.11	

Browser	
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Encapsula>on	
•  Encapsula>on	is	the	mechanism	
used	to	effect	protocol	layering	
–  Lower	layer	wraps	higher	layer	
content,	adding	its	own	informa>on	to	
make	a	new	message	for	delivery	

–  Like	sending	a	le[er	in	an	envelope;	
postal	service	doesn’t	look	inside	



Encapsula>on	(3)	
•  Message	“on	the	wire”	begins	to	look	like	an	onion	

–  Lower	layers	are	outermost	
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Encapsula>on	(4)	
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Advantage	of	Layering	
•  Informa>on	hiding	and	reuse	
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Advantage	of	Layering	(2)	
•  Informa>on	hiding	and	reuse	
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Advantage	of	Layering	(3)	
•  Using	informa>on	hiding	to	connect	different	systems	
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Advantage	of	Layering	(4)	
•  Using	informa>on	hiding	to	connect	different	systems	
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Disadvantage	of	Layering	
•  ??	



Internet	Reference	Model	
•  A	four	layer	model	based	on	experience;	omits	some		
OSI	layers	and	uses	IP	as	the	network	layer.	
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4						Applica>on				–	Programs	that	use	network	service	
	3						Transport							–	Provides	end-to-end	data	delivery	
	2						Internet 							–	Send	packets	over	mul>ple	networks	

1						Link 							–	Send	frames	over	a	link	



Internet	Reference	Model	(3)	
•  IP	is	the	“narrow	waist”	of	the	Internet	

–  Supports	many	different	links	below	and	apps	above	
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Layer-based	Names	(2)	
•  For	devices	in	the	network:	

Network	
Link	

Network	
Link	

Link	 Link	

Physical	 Physical	Repeater	(or	hub)	

Switch	(or	bridge)	

Router	
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Layer-based	Names	(3)	
•  For	devices	in	the	network:	

Proxy	or	
middlebox	
or	gateway	

Network	
Link	

Network	
Link	

App	
Transport	

App	
Transport	

But	they	all	
look	like	this!	
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Scope	of	the	Physical	Layer	
•  Concerns	how	signals	are	used	to	
transfer	message	bits	over	a	link	
– Wires	etc.	carry	analog	signals	
– We	want	to	send	digital	bits	

…10110	10110…	

Signal	



Simple	Link	Model	
•  We’ll	end	with	an	abstrac>on	of	a	physical	channel	

–  Rate	(or	bandwidth,	capacity,	speed)	in	bits/second	
–  Delay	in	seconds,	related	to	length	

•  Other	important	proper>es:	
– Whether	the	channel	is	broadcast,	and	its	error	rate	
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Delay	D,	Rate	R		

Message	



Message	Latency	
•  Latency	is	the	delay	to	send	a	message	over	a	link	

–  Transmission	delay:	>me	to	put	M-bit	message	“on	the	wire”	

		

–  Propaga>on	delay:	>me	for	bits	to	propagate	across	the	wire	

		

–  Combining	the	two	terms	we	have:			
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Message	Latency	(2)	
•  Latency	is	the	delay	to	send	a	message	over	a	link	

–  Transmission	delay:	>me	to	put	M-bit	message	“on	the	wire”	

T-delay	=	M	(bits)	/	Rate	(bits/sec)	=	M/R	seconds	

–  Propaga>on	delay:	>me	for	bits	to	propagate	across	the	wire	

P-delay	=	Length	/	speed	of	signals	=	Length	/	⅔c	=	D	seconds	

–  Combining	the	two	terms	we	have:				L	=	M/R	+	D	
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Metric	Units	
•  The	main	prefixes	we	use:	

	
	
	

•  Use	powers	of	10	for	rates,	2	for	storage	
–  1	Mbps	=	1,000,000	bps,	1	KB	=	210	bytes	

•  “B”	is	for	bytes,	“b”	is	for	bits	

Prefix Exp. prefix exp. 
K(ilo) 103 m(illi) 10-3 

M(ega) 106 µ(micro) 10-6 

G(iga) 109 n(ano) 10-9 
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Latency	Examples	(2)	
•  “Dialup”	with	a	telephone	modem:	

D	=	5	ms,	R	=	56	kbps,	M	=	1250	bytes	

L	=	5	ms	+	(1250x8)/(56	x	103)	sec	=	184	ms!	
	

•  Broadband	cross-country	link:	
D	=	50	ms,	R	=	10	Mbps,	M	=	1250	bytes	

L	=	50	ms	+	(1250x8)	/	(10	x	106)	sec	=	51	ms	

•  A	long	link	or	a	slow	rate	means	high	latency	
–  Open,	one	delay	component	dominates	
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Bandwidth-Delay	Product	
•  Messages	take	space	on	the	wire!		

	

•  The	amount	of	data	in	flight	is	the	
bandwidth-delay	(BD)	product	

	 	BD	=	R	x	D	
– Measure	in	bits,	or	in	messages	
–  Small	for	LANs,	big	for	“long	fat”	pipes	
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Bandwidth-Delay	Example	(2)	
•  Fiber	at	home,	cross-country		

R=40	Mbps,	D=50	ms	
BD		=	40	x	106	x	50	x	10-3	bits		

	=	2000	Kbit	
	=	250	KB	

•  	That’s	quite	a	lot	of	data															
“in	the	network”!	

110101000010111010101001011	



weights	of	harmonic	frequencies	
Signal	over	>me	

=	

Frequency	Representa>on	
•  A	signal	over	>me	can	be	represented	by	its	frequency	
components	(called	Fourier	analysis)	
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Lost!	

Effect	of	Less	Bandwidth	
•  Fewer	frequencies	(=less	bandwidth)	degrades	signal	

27	

Lost!	

27	

Lost!	
Bandwidth	



Signals	over	a	Wire	(2)	
•  Example:	

28	

2:	A[enua>on:	

3:	Bandwidth:	

4:	Noise:	

Sent	signal	



CSE	461	University	of	Washington	 29	

Signals	over	Wireless	
•  Signals	transmi[ed	on	a	carrier	
frequency,	like	fiber	

•  Travel	at	speed	of	light,	spread	out	
and	a[enuate	faster	than	1/dist2	

•  Mul>ple	signals	on	the	same	
frequency	interfere	at	a	receiver	
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Signals	over	Wireless	(5)	
•  Various	other	effects	too!	

– Wireless	propaga>on	is	complex,	
depends	on	environment	

•  Some	key	effects	are	highly	
frequency	dependent,		
–  E.g.,	mul>path	at	microwave	
frequencies	



Wireless	Mul>path	
•  Signals	bounce	off	objects	and	take	mul>ple	paths	

–  Some	frequencies	a[enuated	at	receiver,	varies	with	loca>on	
– Messes	up	signal;	handled	with	sophis>cated	methods	
(§2.5.3)		

31	
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Wireless	
•  Sender	radiates	signal	over	a	region	

–  In	many	direc>ons,	unlike	a	wire,	to	
poten>ally	many	receivers	

–  Nearby	signals	(same	freq.)	interfere	
at	a	receiver;	need	to	coordinate	use	
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WiFi	

WiFi	



Wireless	(2)	
•  Microwave,	e.g.,	3G,	and	unlicensed	(ISM)	frequencies,	
e.g.,	WiFi,	are	widely	used	for	computer	networking	

34	

802.11	
b/g/n	

802.11a/g/n	
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Topic	
•  We’ve	talked	about	signals	
represen>ng	bits.	How,	exactly?	
–  This	is	the	topic	of	modula>on	

…10110	10110…	

Signal	



A	Simple	Modula>on	
•  Let	a	high	voltage	(+V)	represent	a	1,	and	low	
voltage	(-V)	represent	a	0	
– This	is	called	NRZ	(Non-Return	to	Zero)	

36	

Bits	

NRZ	

0	 0	 1	 0	 1	 1	 1	 1	 0	 1	 0	 0	 0	 0	 1	 0	

+V	

-V	



A	Simple	Modula>on	(2)	
•  Let	a	high	voltage	(+V)	represent	a	1,	and	low	
voltage	(-V)	represent	a	0	
– This	is	called	NRZ	(Non-Return	to	Zero)	
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Bits	

NRZ	

0	 0	 1	 0	 1	 1	 1	 1	 0	 1	 0	 0	 0	 0	 1	 0	

+V	

-V	



Modula>on	

38	

NRZ	signal	of	bits	

Amplitude	ship	keying	

Frequency	ship	keying	

Phase	ship	keying	
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Topic	
•  How	rapidly	can	we	send	
informa>on	over	a	link?		
–  Nyquist	limit	(~1924)	»	
–  Shannon	capacity	(1948)	»	

•  Prac>cal	systems	are	devised									
to	approach	these	limits	
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Key	Channel	Proper>es	
•  The	bandwidth	(B),	signal	strength	
(S),	and	noise	strength	(N)	
–  B	limits	the	rate	of	transi>ons	
–  S	and	N	limit	how	many	signal	levels	
we	can	dis>nguish	

Bandwidth	B	 Signal	S,	
Noise	N	
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Nyquist	Limit	
•  The	maximum	symbol	rate	is	2B	

•  Thus	if	there	are	V	signal	levels,	
ignoring	noise,	the	maximum	bit	
rate	is:	 R	=	2B	log2V	bits/sec	

1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
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Claude	Shannon	(1916-2001)	
•  Father	of	informa>on	theory	

–  “A	Mathema>cal	Theory	of	
Communica>on”,	1948	

•  Fundamental	contribu>ons	to	
digital	computers,	security,										
and	communica>ons	

Credit:	Courtesy	MIT	Museum	

Electromechanical	mouse	
that	“solves”	mazes!	



Shannon	Capacity	
•  How	many	levels	we	can	dis>nguish	depends	on	S/N	

–  Or	SNR,	the	Signal-to-Noise	Ra>o	
–  Note	noise	is	random,	hence	some	errors	

•  SNR	given	on	a	log-scale	in	deciBels:	
–  SNRdB	=		10log10(S/N)	

43	
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Shannon	Capacity	(2)	
•  Shannon	limit	is	for	capacity	(C),	
the	maximum	informa>on	carrying	
rate	of	the	channel:	

C	=	B	log2(1	+	S/(BN))	bits/sec	



Wired/Wireless	Perspec>ve	
•  Wires,	and	Fiber	

– Engineer	link	to	have	requisite	SNR	and	B	
→ Can	fix	data	rate	

•  Wireless	
– Given	B,	but	SNR	varies	greatly,	e.g.,	up	to	60	dB!	
→ Can’t	design	for	worst	case,	must	adapt	data	rate	

45	



Wired/Wireless	Perspec>ve	(2)	
•  Wires,	and	Fiber	

– Engineer	link	to	have	requisite	SNR	and	B	
→ Can	fix	data	rate	

•  Wireless	
– Given	B,	but	SNR	varies	greatly,	e.g.,	up	to	60	dB!	
→ Can’t	design	for	worst	case,	must	adapt	data	rate	

46	

Engineer	SNR	for	data	rate	

Adapt	data	rate	to	SNR	



Puzng	it	all	together	–	DSL		
•  DSL	(Digital	Subscriber	Line)	is	widely	used	for	
broadband;	many	variants	offer	10s	of	Mbps	
–  Reuses	twisted	pair	telephone	line	to	the	home;	it	has	up	to		
~2	MHz	of	bandwidth	but	uses	only	the	lowest	~4	kHz	

47	



DSL	(2)		
•  DSL	uses	passband	modula>on	(called	OFDM)	

–  Separate	bands	for	upstream	and	downstream	(larger)	
– Modula>on	varies	both	amplitude	and	phase	(called	QAM)	
–  High	SNR,	up	to	15	bits/symbol,	low	SNR	only	1	bit/symbol	
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Upstream	 Downstream	

26	–	138	
kHz	

0-4	
kHz	 143	kHz	to	1.1	MHz	

Telephone	

Freq.	

Voice	 Up	to	1	Mbps	 Up	to	12	Mbps	

ADSL2:	
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Topic	
•  Some	bits	will	be	received	in	error	due	

to	noise.	What	can	we	do?	
–  Detect	errors	with	codes	»	
–  Correct	errors	with	codes	»	
–  Retransmit	lost	frames	

•  Reliability	is	a	concern	that	cuts	
across	the	layers	–	we’ll	see	it	again	

Later	



Problem	–	Noise	may	flip	received	bits		
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Signal	
0	 0	 0	 0	

1	1	 1	
0	

0	 0	 0	 0	
1	1	 1	

0	

0	 0	 0	 0	
1	1	 1	

0	

Slightly	
Noisy	

Very	
noisy	
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Approach	–	Add	Redundancy		
•  Error	detec>on	codes	

–  	Add	check	bits	to	the	message	bits	to	let	
some	errors	be	detected	

•  Error	correc>on	codes	
–  Add	more	check	bits	to	let	some	errors	be	
corrected	

•  Key	issue	is	now	to	structure	the	code	
to	detect	many	errors	with	few	check	
bits	and	modest	computa>on	
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Mo>va>ng	Example	
•  A	simple	code	to	handle	errors:	

–  Send	two	copies!	Error	if	different.	
	

•  How	good	is	this	code?	
–  How	many	errors	can	it	detect/correct?	
–  How	many	errors	will	make	it	fail?	
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Mo>va>ng	Example	(2)	
•  We	want	to	handle	more	errors	
with	less	overhead	
– Will	look	at	be[er	codes;	they	are	
applied	mathema>cs	

–  But,	they	can’t	handle	all	errors	
–  And	they	focus	on	accidental	errors	
(will	look	at	secure	hashes	later)	



CSE	461	University	of	Washington	 54	

Using	Error	Codes	
•  Codeword	consists	of	D	data	plus	R	

check	bits	(=systema>c	block	code)	

•  Sender:		
–  Compute	R	check	bits	based	on	the	D	
data	bits;	send	the	codeword	of	D+R	bits	

D	 R=fn(D)	
Data	bits	 Check	bits	
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Using	Error	Codes	(2)	
•  Receiver:			

–  Receive	D+R	bits	with	unknown	errors	
–  Recompute	R	check	bits	based	on	the	
D	data	bits;	error	if	R	doesn’t	match	R’	

D	 R’	
Data	bits	 Check	bits	

R=fn(D)	
=?	
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Intui>on	for	Error	Codes	
•  For	D	data	bits,	R	check	bits:	

	
	
	

•  Randomly	chosen	codeword	is	unlikely	
to	be	correct;	overhead	is	low	

All	
codewords	
Correct	

codewords	
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R.W.	Hamming	(1915-1998)	
•  Much	early	work	on	codes:	

–  “Error	Detec>ng	and	Error	Correc>ng	
Codes”,	BSTJ,	1950	

•  See	also:	
–  “You	and	Your	Research”,	1986	

Source:	IEEE	GHN,	©	2009	IEEE	
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Hamming	Distance	
•  Distance	is	the	number	of	bit	flips	
needed	to	change	D1	to	D2	

•  Hamming	distance	of	a	code	is	the	
minimum	distance	between	any	
pair	of	codewords	
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Hamming	Distance	(2)	
•  Error	detec>on:	

–  For	a	code	of	distance	d+1,	up	to	d	
errors	will	always	be	detected	
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Hamming	Distance	(3)	
•  Error	correc>on:	

–  For	a	code	of	distance	2d+1,	up	to	d	
errors	can	always	be	corrected	by	
mapping	to	the	closest	codeword	
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Topic	
•  Some	bits	may	be	received	in	error	

due	to	noise.	How	do	we	detect	this?	
–  Parity	»	
–  Checksums	»	
–  CRCs	»	

•  Detec>on	will	let	us	fix	the	error,	for	
example,	by	retransmission	(later).	
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Simple	Error	Detec>on	–	Parity	Bit	
•  Take	D	data	bits,	add	1	check	bit	
that	is	the	sum	of	the	D	bits	
–  Sum	is	modulo	2	or	XOR	
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Parity	Bit	(2)	
•  How	well	does	parity	work?	

– What	is	the	distance	of	the	code?	
		
–  How	many	errors	will	it	detect/
correct?	

		

•  What	about	larger	errors?	
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Checksums	
•  Idea:	sum	up	data	in	N-bit	words	

– Widely	used	in,	e.g.,	TCP/IP/UDP	

•  Stronger	protec>on	than	parity	

1500	bytes	 16	bits	
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Internet	Checksum	
•  Sum	is	defined	in	1s	complement	
arithme>c	(must	add	back	carries)	
–  And	it’s	the	nega>ve	sum	

•  “The	checksum	field	is	the	16	bit	one's	
complement	of	the	one's	complement	
sum	of	all	16	bit	words	…”	–	RFC	791	
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Internet	Checksum	(2)	
Sending:	
1. Arrange	data	in	16-bit	words	

2. Put	zero	in	checksum	posi>on,	add	
	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	(complement)	to	get	sum	

0001  
f203  
f4f5  
f6f7  

+(0000) 
------  
2ddf0  

 
ddf0  

+    2  
------  
ddf2  

 
220d  
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Internet	Checksum	(3)	
Sending:	
1. Arrange	data	in	16-bit	words	
2. Put	zero	in	checksum	posi>on,	add	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	(complement)	to	get	sum	

0001  
f203  
f4f5  
f6f7  

+(0000) 
------  
2ddf0  

 
ddf0  

+    2  
------  
ddf2  

 
220d  



CSE	461	University	of	Washington	 68	

Internet	Checksum	(4)	
Receiving:	
1. Arrange	data	in	16-bit	words	
2. Checksum	will	be	non-zero,	add	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	the	result	and	check	it	is	0	

0001  
f203  
f4f5  
f6f7  

+ 220d  
------  
2fffd  

  
fffd  

+    2  
------  
ffff  

 
   0000  
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Internet	Checksum	(5)	
Receiving:	
1. Arrange	data	in	16-bit	words	
2. Checksum	will	be	non-zero,	add	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	the	result	and	check	it	is	0	

0001  
f203  
f4f5  
f6f7  

+ 220d  
------  
2fffd  

  
fffd  

+    2  
------  
ffff  

 
   0000  
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Internet	Checksum	(6)	
•  How	well	does	the	checksum	work?	

– What	is	the	distance	of	the	code?	
–  How	many	errors	will	it	detect/
correct?	

		

•  What	about	larger	errors?	
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Cyclic	Redundancy	Check	(CRC)	
•  Even	stronger	protec>on	

–  Given	n	data	bits,	generate	k	check	
bits	such	that	the	n+k	bits	are	evenly	
divisible	by	a	generator	C		

•  Example	with	numbers:	
–  n	=	302,	k	=	one	digit,	C	=	3	
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CRCs	(2)	
•  The	catch:	

–  It’s	based	on	mathema>cs	of	finite	
fields,	in	which	“numbers”	
represent	polynomials	

–  e.g,	10011010	is	x7	+	x4	+	x3	+	x1		

•  What	this	means:	
– We	work	with	binary	values	and	
operate	using	modulo	2	arithme>c	
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CRCs	(3)	
•  Send	Procedure:	
1.  Extend	the	n	data	bits	with	k	zeros	
2.  Divide	by	the	generator	value	C	
3.  Keep	remainder,	ignore	quo>ent	
4.  Adjust	k	check	bits	by	remainder	

•  Receive	Procedure:	
1.  Divide	and	check	for	zero	remainder	



CRCs	(4)	
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Data	bits:	
1101011111	

	

Check	bits:	
C(x)=x4+x1+1	
C	=	10011	

k	=	4		
	

1	0	0	1	1	1		1		0		1		0		1		1		1		1		1		



CRCs	(5)	
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CRCs	(6)	
•  Protec>on	depend	on	generator	

–  Standard	CRC-32	is	10000010	
01100000	10001110	110110111	

		

•  Proper>es:	
–  HD=4,	detects	up	to	triple	bit	errors	
–  Also	odd	number	of	errors		
–  And	bursts	of	up	to	k	bits	in	error	
–  Not	vulnerable	to	systema>c	errors	
like	checksums	
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Error	Detec>on	in	Prac>ce	
•  CRCs	are	widely	used	on	links	

– Ethernet,	802.11,	ADSL,	Cable	…	
•  Checksum	used	in	Internet		

–  IP,	TCP,	UDP	…	but	it	is	weak	
•  Parity	

–  Is	li[le	used	
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Topic	
•  Two	strategies	to	handle	errors:	
1.  Detect	errors	and	retransmit	frame	

(Automa>c	Repeat	reQuest,	ARQ)	

2.  Correct	errors	with	an	error								
correc>ng	code	

Done	this	
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Context	on	Reliability	
•  Where	in	the	stack	should	we			
place	reliability	func>ons?	

Physical	
Link	

Network	
Transport	
Applica>on	
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Context	on	Reliability	(2)	
•  Everywhere!	It	is	a	key	issue	

–  Different	layers	contribute	differently	

Physical	
Link	

Network	
Transport	
Applica>on	

Recover	ac>ons	
(correctness)	

Mask	errors	
(performance	op>miza>on)	
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ARQ	
•  ARQ	open	used	when	errors	are	
common	or	must	be	corrected	
–  E.g.,	WiFi,	and	TCP	(later)	

•  Rules	at	sender	and	receiver:	
–  Receiver	automa>cally	acknowledges	
correct	frames	with	an	ACK	

–  Sender	automa>cally	resends	aper	a	
>meout,	un>l	an	ACK	is	received	



CSE	461	University	of	Washington	 82	

ARQ	(2)	
•  Normal	opera>on	(no	loss)	

Frame	

ACK	
Timeout	 Time	

Sender	 Receiver	
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ARQ	(3)	
•  Loss	and	retransmission	

Frame	

Timeout	 Time	

Sender	 Receiver	

Frame	

ACK	

X	
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So	What’s	Tricky	About	ARQ?	
•  Two	non-trivial	issues:	

–  How	long	to	set	the	>meout?	»	
–  How	to	avoid	accep>ng	duplicate	
frames	as	new	frames	»	

•  Want	performance	in	the	common	
case	and	correctness	always	
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Timeouts	
•  Timeout	should	be:	

–  Not	too	big	(link	goes	idle)	
–  Not	too	small	(spurious	resend)	

•  Fairly	easy	on	a	LAN	
–  Clear	worst	case,	li[le	varia>on	

•  Fairly	difficult	over	the	Internet	
– Much	varia>on,	no	obvious	bound	
– We’ll	revisit	this	with	TCP	(later)	
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Duplicates	
•  What	happens	if	an	ACK	is	lost?	

X	

Frame	

ACK	Timeout	

Sender	 Receiver	

New	
Frame?	
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Duplicates	(2)	
•  What	happens	if	an	ACK	is	lost?	

Frame	

ACK	

X	

Frame	

ACK	Timeout	

Sender	 Receiver	

New	
Frame?	

New		
Frame??	
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Duplicates	(3)	
•  Or	the	>meout	is	early?	

ACK	

Frame	

Timeout	

Sender	 Receiver	

New	
Frame?	
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Duplicates	(4)	
•  Or	the	>meout	is	early?	

Frame	

ACK	

Frame	

ACK	

Timeout	

Sender	 Receiver	

New	
Frame?	

New		
Frame??	
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Sequence	Numbers	
•  Frames	and	ACKs	must	both	carry	
sequence	numbers	for	correctness	

•  To	dis>nguish	the	current	frame	
from	the	next	one,	a	single	bit	(two	
numbers)	is	sufficient	
–  Called	Stop-and-Wait	
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Stop-and-Wait	
•  In	the	normal	case:	

Time	

Sender	 Receiver	
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Stop-and-Wait	(2)	
•  In	the	normal	case:	

Frame	0	

ACK	0	Timeout	 Time	

Sender	 Receiver	

Frame	1	

ACK	1	
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Stop-and-Wait	(3)	
•  With	ACK	loss:	

X	

Frame	0	

ACK	0	Timeout	

Sender	 Receiver	

New	
Frame?	
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Stop-and-Wait	(4)	
•  With	ACK	loss:	

Frame	0	

ACK	0	

X	

Frame	0	

ACK	0	Timeout	

Sender	 Receiver	

New	
Frame?	

It’s	a		
Resend!	
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Stop-and-Wait	(5)	
•  With	early	>meout:	

ACK	0	

Frame	0	

Timeout	

Sender	 Receiver	

New	
Frame?	
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Stop-and-Wait	(6)	
•  With	early	>meout:	

Frame	0	

ACK	0	

Frame	0	

ACK	0	

Timeout	

Sender	 Receiver	

New	
Frame?	

It’s	a	
Resend	

OK	…	
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Limita>on	of	Stop-and-Wait	
•  It	allows	only	a	single	frame	to	be	
outstanding	from	the	sender:	
–  Good	for	LAN,	not	efficient	for	high	BD	

•  Ex:	R=1	Mbps,	D	=	50	ms	
–  How	many	frames/sec?	If	R=10	Mbps?	
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Sliding	Window	
•  Generaliza>on	of	stop-and-wait	

–  Allows	W	frames	to	be	outstanding	
–  Can	send	W	frames	per	RTT	(=2D)	

–  Various	op>ons	for	numbering	
frames/ACKs	and	handling	loss	

•  Will	look	at	along	with	TCP	(later)	


