
CSE 531: Computational Complexity I Winter 2016

Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity
January 22, 2016

Lecturer: Paul Beame Scribe: Paul Beame

Diagonalization enabled us to separate many complexity classes. Could it be used to separate P
from NP? In order to answer this we visit another stronger notion of reduction due to Turing and
Cook.

1 Oracle TMs and P versus NP

Definition 1.1. An oracle TM M ? is a Turing machine that an extra tape, called the oracle tape, as
well as three special states, a query state qquery and two answer states qyes and qno. It is designed
to be used with an oracle (or black box) that decides decides membership in some set of strings.
When M ? enters the query state with a string z on its query tape, in the next step, the machine
enters state qyes or qno depending on whether z is a member of the oracle set. Each oracle query
takes one time step. We can have oracle NTMs as well as oracle TMs.

When the oracle set is a fixed set A, we write MA to denote the computing device that results.

Oracle TMs give the most general natural notion of reduction between decision problems.

Definition 1.2. A is Turing reducible to B, AT ≤ B, iff there is an oracle TM M ? such that MB

decides language A.

Intuitively, this says that one can decide A using multiple adaptive calls to a subroutine that decides
B. Though it is not a focus of the current discussion, we also mention the stronger notion of
polynomial-time reduction that results from this point of view.

Definition 1.3. A is polynomial-time Turing reducible to B, AT
P ≤ B iff there is an oracle TM M ?

such that MB decides language A and the running time of MB is polynomial in its input size. In
this case, we also say that A is Cook-reducible to B, in contrast to the polynomial-time mapping
reductions being known as Karp reductions,

Cook reductions preserve P, as do Karp reductions, but unlike Karp reductions they do not nec-
essarily preserve NP. The terminology reflects differences between the notions of reduction in
Cook’s 1971 paper and Karp’s follow-on 1972 paper on NP-completeness.

1

Definition 1.4. For any A ⊆ {0, 1}∗, define

• DTIMEA((T(n)) = {L | L is decided by some oracle TM MA with running time O(T (n))}.

• NTIMEA((T(n)) = {L | L is decided by some oracle NTM MA with running time O(T (n))}.

A key property of diagonalization is that it only involves simulation of Turing machines by other
Turing machines. Because of this, it still works equally well with oracle TMs. For example, we
have the following:

Theorem 1.5. Let f, g : N→ N.

• If g is time-constructible and f(n)log2f(n) is o(g(n)) then for all A ⊆ {0, 1}∗, DTIMEA(f(n)) (
DTIMEA(g(n)).

• If g is time-constructible and f(n+ 1) is o(g(n)) then for all A ⊆ {0, 1}∗, NTIMEA(f(n)) (
NTIMEA(g(n)).

Proof. The proofs are identical to those of the ones without the oracle A except that enumerations
are of oracle machines M ? rather than ordinary ones and every machine is given oracle A.

When we have a statement holds that for Turing machines that have an added oracle A if and only
if it holds for Turing machines without an oracle, we say that it is true relative to A. When it is
true relative to oracle A for every oracle A, as in the above theorem, then we say that the statement
relativizes. Diagonalization arguments always relativize.

However, we now see that the P verus NP question cannot relativize and hence diagonalization
arguments will not suffice either to prove that P 6= NP and simulation arguments will not be
enough to prove P = NP.

Theorem 1.6 (Baker,Gill,Sollovay). There are oracles A and B such that PA = NPA but PB 6=
NPB.

In order to prove the first part of the theorem we will need a language that is sufficiently hard that
a determinstic solution to it can capure all of NP. For convenience, we will use a generic problem
that is complete for EXP. (We haven’t defined this yet but it is the obvious analog of NP-complete.

Definition 1.7. Define EXPCOM = {[M,x, 1n] |M outputs 1 on input x in at most 2n steps.}.

Lemma 1.8. EXPCOM is EXP complete. more precisely,

1. EXPCOM ∈ DTIME(n2n) ⊂ EXP

2

2. For all A ∈ EXP, A ≤P EXPCOM .

Proof. For the first part observe that we run the universal TM for M on input x and simply add a
clock based on the 1n in the input that counts down from 2n for every simulated step.

For the second part, consider an arbitrary A ∈ EXP and let MA be an associated TM that decides
A in time at most 2knk for some integer k. The reduction f from A to EXPCOM takes an input
x for A and creates the string y = [MA, x, 1

k|x|k]. This can be done in time O(nk). Clearly x ∈ A
iff MA(x) = 1 which holds iff y ∈ EXPCOM .

Proof of Theorem 1.6. We will use EXPCOM for the oracle A. By definition of oracle TMs,
PEXPCOM ⊆ NPEXPCOM. Since EXPCOM is complete for EXP we immediately have

EXP ⊆ PEXPCOM ⊆ NPEXPCOM.

We will show that NPEXPCOM ⊆ EXP which will prove that PEXPCOM = NPEXPCOM. Now any
language L in NPEXPCOM is decided by some oracle NTM M ? running in time O(n`) for some
integer ` that can make at most one call to EXPCOM per step. We will simulate this determinis-
tically. To do this we enumerate over each of the 2O(n`) paths of the NTM computation. Whenever
a query is made to the EXPCOM oracle we use the O(2nn) algorithm for EXPCOM shown in
the lemma. The size of the query can be at most O(n`) so each oracle call requires at most time
2O(n`)O(n`) and the total per path is only an O(n`) factor larger. Multiplying by the number of
paths, this is still 2O(n`) time and hence L ∈ EXP as required.

In order to construct an oracle B such that PB 6= NPB, we first define a language based on arbitrary
oracle B that will be our separating language for the right choice of B. Define

L(B) = {1n | ∃y ∈ B. |y| = n}.

It is easy to see that L(B) ∈ NB for every oracle B: One input x, first check that x = 1n for some
n. Then guess a y ∈ {0, 1}n on the oracle tape and query B. Output 1 if and only if B answers
yes.

We now construct a set B such that L(B) /∈ PB. We will in fact construct B such that no deter-
ministic oracle TM M ? running in at most 2n/2 steps with oracle B can decide L(B). To do this
we will show how to fool each oracle TM on some input in turn. This will feel a little bit like the
diagonalization proofs but we will not need to worry about the resources required to build B; we
just need to show that B exists.

Let M ?
1 ,M

?
2 , . . . be an enumeration of all oracle TMs in which each oracle TM appears infinitely

often in the list. (We can do this using the [M]01k coding trick we used before for the hierarchy
theorem.) Define n1 = 2 and ni+1 = 2ni/2 + 1. We will define B iteratively, starting with B0 = ∅
and adding strings as we go to create B1, B2, B will be the limit (union) of this sequence. In

3

general, B will agree with Bi on all strings of length < ni+1 Bi−1 and Bi will only differ on strings
of length ≥ ni but < ni+1.

Suppose that B0, . . . , Bi−1 have already been defined. Consider the computation of MBi−1

i on input
1ni for up to 2ni/2 steps. On input 1ni , Mi queries Bi−1 for at most 2ni/2 strings of length ni so
there must be some string y ∈ {0, 1}n that Mi never asks about. We now define Bi as follows:

Bi =

{
Bi−1 ∪ {y} M

Bi−1

i (1ni) = 0

Bi−1 M
Bi−1

i (1ni) = 1.

Observe that we have constructed Bi so that 1ni ∈ L(Bi) if and only if MBi−1

i rejects 1ni . Also
observe that since Bi−1 and Bi differ only on the string y which M does not query given oracle
Bi−1, MBi

i also gives the wrong answer for L(Bi) on input 1ni . Finally, we have constructed things
so that Bi and B are the same for all strings up to length 2ni/2 which is the largest size input that
M ?

i can query on input 1ni in time 2ni/2, no matter what the oracle. This means that the behavior
of MB

i on input 1ni is exactly the same as that of MBi
i . Moreover, since B and Bi agree on inputs

of length ni, 1ni ∈ L(B) if and only if MB
i does not accept 1ni in 2ni/2 steps.

Therefore no oracle TM MB running in time 2n/2 can decide L(B) and hence L(B) /∈ PB, proving
that PB 6= NPB.

2 The structure of NP

If P 6= NP what does the structure of NP look like under polynomial-time mapping reductions?

Definition 2.1. Write the equivalence relation A ≡P B iff A ≤P B and B ≤P A. Write A <P B
iff A ≤P B but A 6≡P B.

The following are easy consequences of the definitions.

Proposition 2.2. (1) If A and B are NP-complete then A ≡P B. (2) If A,B ∈ P, A,B ⊆ {0, 1}∗,
and and neither A nor B is ∅ or {0, 1}∗ then A ≡P B.

If P = NP then the above two equivalence classes are equal. Ladner looked at the question of what
happens if P 6= NP.

He showed the following:

Theorem 2.3 (Ladner). If P|neNP then one can embed every countable partial order < in the order
<P on the set NP. In particular, there exist languages L that are neither in P nor NP-complete.

A proof of the latter consequence is in the text. The example, as with all of the examples in
Ladner’s theorem is fairly technical and we will not go over it in class.

4

3 Space Complexity

We recall the definition of deterministic space complexity classes and add the definition for non-
deterministic space complexity classes.

Definition 3.1.

DSPACE(S(n)) = {L ⊆ {0, 1}∗ | there is a TM M that decides L using at most O(S(|x|)) cells
on any work tape on any input x}.

NSPACE(S(n)) = {L ⊆ {0, 1}∗ | there is an NTM M that decides L using at most O(S(|x|)) cells
on any work tape on any computation path on any input x}.

We observe that when we are only measuring space complexity, we can always assume without
loss of generality that when a space-bounded Turing machine finishes its computation, it has erased
its work tapes and its tape heads are always at the left ends of the tapes. We call this a normal-form
TM.

As with time complexity, ther are some weird space bounds that behave oddly and we need to rule
out.

Definition 3.2. A function S : N → N is space-constructible iff S(n) ≥ log2 n and there is a
deterministic TM M using space O(S(n)) that takes input x and produces [S(|x|)].

Observe that, for example, since two-way finite automata have the same power as 1-way finite
automata DSPACE(1) = NSPACE(1) = REGULAR, since we can encode the constant
amount of storage of the Turing machines in the state.

Configuration Graphs As discussed earlier, a configuration of a Turing machine M on input x
consists of (a) the state of M , (b) the contents of its input and work tapes, and (c) the positions of
all its tape heads.

Definition 3.3. The configuration graph GM,x of M on input x, is a directed graph whose vertices
are the configurations of M on input x such that there is an edge (C,D) between configurations
C and D iff D can follow C after one step of computation of M . The configuration graph has a
distinguished start node C0 which is the starting configuration of M on input x.

As discussed above, if M is in normal form, which we will typically assume, GM,x will have a
distinguished target configuration Caccept that will be reached iff M reaches state qaccept on input
x.

Observe that if M is deterministic then for all inputs x, the configuration graph GM,x has out-degree
at most 1. On the other hand, if M is nondeterministic then GM,x may have larger out-degree,
though it will always be bounded by some constant B depending on M .

5

Lemma 3.4. If M uses space O(S(n)) then GM,x has n · 2O(S(n)) vertices. Moreover, if S(n) ≥
log2 n then there is a binary representation [C] of the vertices of GM,x using O(S(n)) bits per
vertex and a CNF formula ϕM,x of size O(S(n)) such that ϕM,x([C], [D]) = 1 if and only if
(C,D) ∈ E(GM,x).

Proof. We begin by counting the configurations of M on input x: There are O(1) possibilities for
the state of the M . The contents of the input tape for all these configurations are fixed to x. There
are n possibilities for the head position on the input tape. For each of the k work tapes there are
|Γ|O(S(n)) choices of tape contents and O(S(n)) choices of head position for each tape. Since the
number of tapes k is constant, we get

O(1) · n · (|Γ|O(S(n)) ·O(S(n)))k = n · 2O(S(n))

different configurations.

For S(n) ≥ log2 n this is 2O(S(n)). Each configuration can be easily laid out as a binary string.
Moreover, the existence of the CNF formula comes from checking each pair of rows in the tableau
proofs that showed the NP-completeness of SAT .

Theorem 3.5. For all space-constructible S(n) ≥ log2 n,

NTIME(S(n)) ⊆ DSPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME(2O(S(n))),

where DTIME(2O(S(n))) =
⋃

cDTIME(2cS(n)).

Proof. The middle containment is immediate by definition.

We begin with the right-hand containment. Let L ∈ NSPACE(S(n)) and let M be a space O(S(n))
NTM that decides L. Note that by definition GM,x is a directed graph with 2O(S(|x|)) nodes and M
accepts x if and only if there is a path in GM,x from C0 to Caccept. The deterministic algorithm
on input x will run a standard graph search algorithm such as BFS or DFS starting at C0 to see if
Caccept is reachable. This runs in time linear in the number of edges and vertices of GM,x which is
2O(S(n)) time.

For the left-hand containment, suppose that L′ ∈ NTIME(S(n)) and let M ′ be an NTM with
time bound O(S(n)) that decides L′. The deterministic simulation of M ′ on input x will iterate
over each of the 2O(S(|x|)) paths in the computation of NTM M ′. (These can be described by
the sequences in the set [B]O(S(|x|)) that select the chosen path.) For each such sequence, the
deterministic TM will execute that sequence in time O(S(|x|)), which can touch at most O(S(n))
memory cells. The work tapes store the current element of [B]O(S(n)) and the current contents of
the work tapes of NTM M ′. Therefore it runs in space O(S(n)) as required.

6

	Oracle TMs and P versus NP
	The structure of NP
	Space Complexity

