CSE 531: Computability and Complexity Autumn 2005
Problem Set #1 Instructor: Paul Beame
Due by October 14, 2005 before 4:30 p.m.

Reminder: If you haven’t done so already, subscribe to CSE 531 email group ASAP by visiting
https://mailman.cs.washington.edu/mailman/listinfo/cseb31.

Instructions: You are allowed to collaborate with fellow students taking the class in solving
problem sets, but you must write up your solutions on your own. If you do collaborate in solving
problems, you must acknowledge for each problem the people you worked with on that problem.

You are expected to refrain from referring to any outside source other than Sipser’s text and
your class notes in coming up with your solutions. Using any pre-existing solutions from outside
sources is not allowed.

Most of the problems require only one or two key ideas for their solution — spelling out these
ideas should give you most of the credit for the problem even if you don’t get all the details right.
Make sure you clearly write down the main idea(s) behind your solution even if you cannot figure
out a complete solution.

1. (10 points) Show that a language is decidable iff some enumerator enumerates the language
in lexicographic order. (Recall that the lexicographic order, puts shorts strings before longer
strings and uses dictionary order for strings of the same length. For example, the lexicographic
ordering of all strings over {0,1} is {¢,0, 1,00, 01, 10,11, 000,...}.)

2. (10 points) Show that a language C'is Turing-recognizable iff there exists a decidable language
D such that C = {z | Jy((z,y) € D)})

3. (10 points) Define the language
S ={ (M) | M is a DFA that accepts w™ whenever it accepts w}.

Prove that S is decidable.

4. (10 points) Prove that deterministic pushdown automata (DPDA) that have 2 stacks can
simulate Turing machines. (The transition function of the 2-DPDA depends on the input
symbol as well as the top symbols of the two stacks; the 2-DPDA can push/pop from both
stacks and like a regular PDA, it has one-way read-only access to the input but the input is
followed by a blank symbol as an end marker. Moreover, at each step precisely one transition
of the DPDA is defined but, unlike a DFA, a 2-DPDA may may may make a transition from
a state without reading any input symbol.)

5. (10 points) A (deterministic) queue automaton is like a (deterministic) pushdown automaton
except that the stack is replaced by a queue. A queue is a tape allowing symbols to be written
on the left end and read only at the right end. Each write operation (a push) adds a symbol to
the left end of the queue and each read operation reads and removes the symbol at the right
end of the queue. The input is given on a separate one-way read-only input tape with a blank
end marker. Prove that deterministic queue automata are equivalent to Turing Machines.



6. (10 points) An unrestricted grammar (or a rewriting system) is a 4-tuple G = (V, 3, R, S)
where

e V is an alphabet;

e > C V is the set of terminal symbols, and V — X is called the set of nonterminal symbols;
e S €V —% is the start symbol; and

e R, the set of rules, is a finite subset of (V*(V — X)V*) x V*.

(Thus the “only” difference from context-free grammars is that the left-hand sides of rules
need not consist of single nonterminals.) Let us write @« — [ if (o, 8) € R; and let’s define
u = v iff, for some wy,ws € V* and some rule o — § € R, u = wiawsy and v = wy Sws. Let
= ¢ denote the reflexive, transitive closure of =¢. We say that a string w € ©* is generated
by G if and only if S =¢ w. Finally, L(G) C ¥*, the language generated by G, is defined to
be the set of all strings in ¥* generated by G.

Your exercise is now to prove that a language is generated by an unrestricted grammar if and
only if it is Turing-recognizable.

(Hint: Using nondeterminism and/or multiple tapes might aid in constructing Turing ma-
chines to simulate a grammar. For the other direction, to simulate a Turing Machine M by a
grammar, try to construct a grammar whose rules simulate backward moves of M, and whose
derivations will consequently simulate backward computations of M.)



