Problem Set 1

Deadline: Oct 17 (at 11:59 PM) in gradescope

Instructions

- You should think about each problem by yourself for at least an hour before choosing to collaborate with others.
- You are allowed to collaborate with fellow students taking the class in solving the problems (in groups of at most 2 people for each problem). But you must write your solution on your own.
- You are not allowed to search for answers or hints on the web. You are encouraged to contact the instructor or the TAs for a possible hint.
- You cannot collaborate on Extra credit problems
- Solutions typeset in LATEX are preferred.
- Feel free to use the Discussion Board or email the instructor or the TA if you have any questions or would like any clarifications about the problems.
- Please upload your solutions to Canvas. The solution to each problem must be uploaded separately.

In solving these assignments and any future assignment, feel free to use these approximations:

$$
1-x \approx e^{-x}, \quad n!\approx(n / e)^{n}, \quad\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k}
$$

Also, recall Cauchy-Schwartz Inequality: For real numbers $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ we have

$$
\sum_{i=1}^{n} a_{i} b_{i} \leq \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \cdot \sqrt{\sum_{i=1}^{n} b_{i}^{2}}
$$

1) Let Y be a non-negative integer valued random variable. Prove the following inequalities:

$$
\frac{\mathbb{E}[Y]^{2}}{\mathbb{E}\left[Y^{2}\right]} \leq \mathbb{P}[Y \neq 0] \leq \mathbb{E}[Y]
$$

2) a) Show how to construct a biased coin, which is 1 with probability p and 0 otherwise, using $O(1)$ random bits in expectation. [Hint: First show how to construct a biased coin using an arbitrary number of random bits. Then show that the expected number of bits examined is small.]
b) Given p_{1}, \ldots, p_{n} where $\sum_{i} p_{i}=1$, show how to sample from $\{1, \ldots, n\}$ where i must be chosen with probability p_{i}, using $O(\log n)$ random bits in expectation.
c) Show that the "in expectation" caveat is necessary: for example, one cannot sample uniformly over $\{1,2,3\}$ using $O(1)$ bits in the worst case.
3) Let $S=\{1, \ldots, n\}$ and $T=\{n+1, \ldots, 2 n\}$. Choose a random set R where each number $1, \ldots, 2 n$ is in R, independently, with probability p.
a) Show that for $p=1 / n$ with a constant probability (independent of n), $R \cap S=\emptyset$ and $R \cap T \neq \emptyset$.
b) Now assume that we choose elements of R only with a pairwise independent hash function, while still every element is chosen with probability p. Choose a specific value of p (as a function of n) such that still with a constant probability (independent of n), $R \cap S=\emptyset, R \cap T \neq \emptyset$.
4) Consider an n-dimension hypercube as a network of parallel processors. The network has $N=2^{n}$ processors where each processor is represented by an n bit string $x_{0} x_{1} \ldots x_{n-1}$ and two processors are connected by a wire if their bit representations differ in exactly one bit. We consider the permutation routing problem on such a network. Each processor x initially contains one packet p_{x} destined for some processor $d(x)$ in the network such that each processor is the destination of exactly one packet, i.e., $d($. is a permutation. All communication between processors proceeds in a sequence of synchronous steps. At each time step each wire can transmit a single packet in each direction. So, in each step, a processor can send at most one packet to each of its neighbors.
We want to design an algorithm to specify a route for each packet, i.e., a sequence of edges from the source to the destination. Note that a packet may have to wait for several steps at an intermediate node y because multiple packets may want to leave y through the same wire. The goal is to design an algorithm to route all packets in a small number of steps.
(a) Consider the following simple strategy called bit-fixing. To send a packet p_{x} from node x to the node $d(x)$, scan the bits of $d(x)$ from left to right, and compare them with the address of the current location of p_{x}, send p_{x} out of the current node along the edge corresponding to the left-most bit in which the current position and $d(x)$ differ. For example, in going from 1011 to 0000 in a 4 -dimensional hypercube, the packet would go through the pass $1011 \rightarrow 0011 \rightarrow 0001 \rightarrow 0000$. Construct a permutation $d($.$) and prove that for such a permutation the bit-fixing strategy takes (at$ least) $\Omega(\sqrt{N} / n)$ steps.
Hint: One way to prove such a lower bound is to find a node that at least \sqrt{N} packets will pass through it.

Now, consider the following 2-phase simple strategy. Pick a uniformly random intermediate destination $\sigma(x)$ for each packet p_{x}. In the first phase use bit-fixing to send p_{x} to $\sigma(x)$. In the second phase send p_{x} from $\sigma(x)$ to $d(x)$. We prove that this routing strategy takes only $O\left(n^{2}\right)$ steps 1.
(b) Show that for each node y the expected number of packets that pass through y in the first phase is $O(n)$.
(c) Use the Bernstein's inequality to show that for each node y the number of packets that pass through y in the first phase is $O(n)$ with probability at least $1-1 / N^{2}$.
Theorem 1.1 (Bernstein's inequality). Let X_{1}, \ldots, X_{n} be independent Bernoulli random variables. Then

$$
\mathbb{P}\left[\sum_{i=1}^{n} X_{i}-\mathbb{E} \sum_{i=1}^{n} X_{i}>\epsilon\right] \leq \exp \left(\frac{-\frac{1}{2} \epsilon^{2}}{\sum \operatorname{Var}\left(X_{i}\right)+\epsilon / 3}\right)
$$

(d) Prove that the 2-phase strategy takes only $O\left(n^{2}\right)$ steps w.h.p..
5) In this problem you are supposed to implement min-cut Algorithm-1 and output the probability that the it returns a min-cut of the given graph (note that in class we proved a lower bound of $1 /\binom{n}{2}$ but the probability can be significantly larger) within 0.01 error.
I will uploaded three input files to the course website. Each file contains the list of edge of a graph; note that the graphs may also have parallel edges. The label of each node is an integer. For example, given the following input you should output 0.50 . This graph has 4 edges and nodes have labels $1,3,4,6$. It

[^0]```
1 3
34
4 6
6 3
```

has a unique minimum cut which is the degree cut of vertex 1 and the probability that Algorithm 1 finds this cut is 0.50 .

For each input file you should output the size of the mincut together with probability that algorithm-1 returns a mincut. Please upload your code to Gradesocope and its output output of your program for each input in the designated "text box".
6) Extra Credit: Say we have a plane with $n$ seats and we have a sequence of $n$ passengers $1,2, \ldots, n$ who are going to board the plane in this order and suppose passenger $i$ is supposed to sit at seat $i$. Say when 1 comes he chooses to sit at some arbitrary seat different from his own sit, 1. From now on, when passenger $i$ boards, if her seat $i$ is available she sits at $i$, otherwise she chooses sits at a uniformly random seat that is still available. What is the probability that passenger $n$ sits at her seat $n$ ?


[^0]:    ${ }^{1}$ We remark that it is also possible to prove that the 2-phase strategy takes only $O(n)$ steps but here we prove a weaker bound.

