
1

1

Introduction to Motes

Portions adapted from:

Crossbow, Inc.

Bill Maurer
maurer@dsplabs.com

DSP Labs, Livermore Ca., USA

www.intel-research.net/berkeley/

2

Why Smart Dust ?

• Advances in low power wireless
communication technology and micro-
electromechanical sensors (MEMS)
transducers

• “Digital Nervous System”
• “Physical Internet”
• “Ubiquitous Computing”

2

3

NEST Technology

• How do you combine sensing,
communication and computation into a
complete architecture ?

• What are the requirements of the
software?

• Networked-Embedded-Systems-
Technology

4

Ad hoc sensing

• Autonomous nodes self
assembling into a network
of sensors

• Sensor information propagated
to central collection point

• Intermediate nodes assist distant
nodes to reach the base station

��������	
������

������������

������������

3

5

Today’s Hardware

• Assembled from off-the-shelf
components

• 8bit MCU
• Low-Power Radio
• Sensors
• I/O

6

Key Software Requirements

• Capable of fine grained
concurrency

• Small physical size
• Efficient resource utilization
• Highly modular

4

7

What is TinyOS ?

• An Open-Source Development Environment

• A Simple Operating System

• A Programming Language and Model

• A Set of Services

8

TinyOS – Development Environment

• Windows and Linux
• Multiple Hardware Platforms

– Not only Crossbow

• Multiple Sensors
– Not only Crossbow

• Debugging Tools
• Reference Applications

5

9

TinyOS – A Simple Operating System

• Scheduler
• Concurrency Intensive
• Limited Resources – SW Components

for Efficient Modularity

10

TinyOS – A Programming Language
and Model

• Separation of construction and
composition:
– programs are built out of components

• Specification of component behavior in
terms of set of interfaces

• Components are statically wired to each
other via their interfaces.
– This increases runtime efficiency

6

11

TinyOS - Services

• Radio, MAC, Messaging, Routing
• Sensor Interfaces
• Power Management
• Security
• Debug
• Time

12

Why TinyOS ?

• Unix Analog (aka 1969)
– A Uniform Programming Language

• C
– A Uniform Abstraction

• E.g, device abstraction
– Open Source

• Many Different Developers
• Many Different Needs

– Many Tools

7

13

Who Controls TinyOS ?

• UC Berkeley Invented
– 1st written by Jason Hill in 2000
– Large portion of development changed to

Intel-Berkeley Research Lab

• Intel-Berkeley Research Lab has largest
role today in core ‘OS’ components
– www.intel-research.net/berkeley/

14

Real-World Deployments

Great Duck Island
http://www.greatduckisland.net/

Center for Embedded Network Sensing
http://www.cens.ucla.edu/

8

15

Introduction to TinyOS and nesC
Programming

• TinyOS Kernel Design and Implementation
• nesC Software Concepts and Basic Syntax
• nesC Code Lab
• TinyOS Packet Networking and PC Base Station

Lab

16

TinyOS Design Goals

• Support Networked Embedded Systems
– asleep but remain vigilant to stimuli
– bursts of events and operations

• Support Mica Hardware
– power, sensing, computation, communication

• Support Technological Advances
– keep scaling down
– smaller, cheaper, lower power

9

17

TinyOS Design Options

• Can’t Use Existing RTOS’s
– Microkernel Architecture

• VxWorks, QNX, WinCE, PalmOS

– Execution Similar to Desktop Systems
• PDA’s, Cell Phones, Embedded PC’s

– More Than a Order of Magnitude Too
Heavy & Slow

– Energy Hog

18

TinyOS Design Conclusion

• Similar to Building Networking Interfaces
– Data Driven Execution
– Manage Large # of Concurrent Data Flows
– Manage Large # of Outstanding Events

• Add: Managing Application Data Processing
• Conclusion: Need a Multi Threading Engine

– Extremely Efficient
– Extremely Simple

10

19

TinyOS Kernel Design

• TinyOS Kernel: 2 Level Scheduling Structure
– Events

• Small Amount of Processing
• E.g. Timer, ADC Interrupts
• Can Interrupt Longer Running Tasks

– Tasks
• Not Time Critical
• Tasks - Larger Amount of Processing
• E.g. Computing an Average on an Array
• Run to Completion WRT other Tasks

– Implies Only Need a Single Stack

20

TinyOS Applications Under The
Hood

• Application is created in the nesC Language
– Details of nesC Forthcoming

• nesC Programming Language Supports the
TinyOS Kernel Design (Events and Tasks)

Application (nesC)

TinyOS Kernel (C)

TinyOS Libs (nesC)

nesC
Compiler

Application &
TinyOS (C)

C Compiler

Application Executable

11

21

The TinyOS Kernel Under The Hood
(nesC Compiler C Code Output)

bool TOSH_run_next_task(void) {
uint8_t old_full;
void (*func)(void);
if (TOSH_sched_full == TOSH_sched_free) {

return 0;
}

else {
old_full = TOSH_sched_full;
TOSH_sched_full++;
TOSH_sched_full &= TOSH_TASK_BITMASK;
func = TOSH_queue[(int)old_full].tp;
TOSH_queue[(int)old_full].tp = 0;
func();
return 1;

}
}

int main(void) {

RealMain$hardwareInit();
TOSH_sched_init();

RealMain$StdControl$init();
RealMain$StdControl$start();
RealMain$Interrupt$enable();

while (1) {
TOSH_run_task();

}
}
static inline void TOSH_run_task(void) {

while (TOSH_run_next_task())
;

TOSH_sleep();
TOSH_wait();

}

Hardware and
Kernel
Initialization

Application
Initialization

Infinite
Loop

1. First Run All Tasks in the Task
Queue (Strictly a FIFO)

2. Then Sleep (In Low Power Mode)

3. And Wait for an Interrupt

Task Runs To
Completion (But
May Be Interrupted
By An Event)

22

Overhead of TinyOS Primitive
Operations

Operation Cost(cycles) Time(uSecs) Normalized to Byte Copy

Byte Copy 8 2 1

Signal an Event 10 2.5 1.25
Call a Command 10 2.5 1.25
Schedule a Task 46 11.5 6
Context Switch 51 12.75 6

Hardware Interrupt (hw) 9 2.25 1
Hardware Interrupt (sw) 71 17.75 9

Code and Data Size of the TinyOS
kernelCode Size(bytes) Data Size(bytes)

Processor Init 172 30
Scheduler 178 16
C runtime 82 0

432 46

12

23

TinyOS/nesC Application Notes

• Everything is Static
– No Dynamic Memory (no malloc)
– No Function Pointers
– No Heap

• nesC Compiler Analysis
– Data Race Conditions
– Function Inlining
– Development Made Easier
– Robustness Improved

24

Application Memory Map

• Text/code - Executable Code
– In the 128K Program Flash

• data – Program Constants
– In the 128K Program Flash

• bss - Variables
– In the 4K SRAM

• Free Space - Fixed (No Dynamic Memory)
• stack - Grows Down in the Free Space

13

25

TinyOS Concepts Embodied by nesC
– Tasks, Events, Commands

• Tasks
– Background computation, non-time critical

• Events
– Time critical
– External Interrupts
– Originator gives a ‘Signal’
– Receiver gets/accepts an ‘Event’

• Command
– Function call to another Component
– Cannot Signal

Component

event

command

signal

task

26

Concepts of SW Components

• Interfaces (xxx.nc)
• Specifies functionality to outside world
• Tell outside world

– what commands can be called
– what events need handling

• Software Components
– Module (xxxM.nc)

• Code file, code implementation
• It codes the Interface

– Configuration (xxxC.nc)
• Linking/wiring of components
• When top level app, drop C from filename

xxx.nc
• optional Module

appxxx.nc
(No code -

Wiring only)

interfaceA.nc

interfaceB.nc
comp3M.nc

(code)

interfaceA.nc

comp1C.nc
(wires)

interfaceB.nc

interfaceA.nc

comp2M.nc
(code)

Ad infinitum...

Main.nc

TinyOS app Blink – Blinks the Red LED

BlinkM.nc
Blink.nc

14

27

Blink.nc Application - A top level configuration
SW component used to form an executable

tos/system/Main.nc

tos/interfaces/StdControl.nc

BlinkM.nc

Blink.nc

tos/interfaces/StdControl.nc

tos/interfaces/Clock.nc tos/interfaces/Leds.nc

tos/system/ClockC.nc tos/system/LedsC.nc

tos/interfaces/Clock.nc tos/interfaces/Leds.nc

What the executable does:

1. Main initializes and starts the application.

2.BlinkM initializes ClockC’s rate at 1Hz.

3. ClockC continuously signals BlinkM at a
rate of 1 Hz.

4. BlinkM commands LedsC red led to
toggle each time it receives a signal from
ClockC.

Blink.nc

Note: The
StdControl interface
is similar to state
machines (init, start,
stop); used
extensively
throughout TinyOS
apps & libs

28

Mote Hardware

15

29

Family of Motes

30

Mica2 and Mica2Dot

• ATmega128 CPU
– Self-programming

• Chipcon CC1000
– FSK
– Manchester

encoding
– Tunable frequency

• Lower power
consumption

1 inch

16

31

Common Platform Architecture
• Atmega uP

• 32Khz crystal and 4Mhz (7.3728Mhz Mica2)
crystal.

• 10 bit ADC

• UART (Mica2/Mica2Dot have 2)

• SPI bus

• I2C bus (hardware for mica2/mica2dot)

• Radio (RFM or Chipcon 1000)

• External serial flash memory (512K byte)

• Connectors for interfacing to sensor and
programming boards

• 3 programmable leds (1 for Mica2Dot)

• JTAG port (Mica, Mica2, Mica2Dot)

RADIO

Atmega uP

S
E

R
IA

L FLA
S

H

51 P
IN

 I/O
 C

O
N

N
E

C
TO

R

LEDS

32

The CC1000 Radio Interface
• Dedicated cpu bus (lines) to configure radio
registers for radio frequency, power,…..

• Dedicated SPI bus for data transfer. CC1000 is
bus master.

• Radio generates one interrupt every 8 bits when
in receive mode.

• Runs usually at 38K or 19K bit rate (default)
Manchester (2x bit)

• More in-depth radio discussion later in session.

~20msec38K

~40msec19K

Xmt or Rcv Time(*)Baud Rate

(*) Does not include random delay

17

33

The Flash Memory Interface
• 512 K bytes of flash (non-volatile) storage

• Useful for data logging.

• Used by GSK (Generic Sensor Kit) and TinyDB for data
logging.

• Used by XNP for code download.

• Serial interface to Atmega uP

• TinyOS driver (Logger..) bit bangs interface

• Attached to 2nd uart port on Mica2. Another driver (UCB)
uses synchonous usart for high speed data transfer.(5KB/Sec
driver)

•Beware, device consumes 15 ma when storing to memory

34

The ADC Interface
• Eight channels of 10 bit ADC, multiplexed.

• Dedicated channels (Mica2):

• ADC0 : Radio’s RSSI

• Shared Mica2 Channels

• ADC7 : Battery monitor (can be shared with another
channel but will have ~10K ohm impedance.

• ADC4..ADC7: JTAG. If using JTAG debug these
channels won’t work as ADC inputs.

• Shared Mica2Dot Channels

• ADC1: Shared for both thermistor and battery voltage

• ADC4..ADC7: JTAG. If using JTAG debug these
channels won’t work as ADC inputs

18

35

Mica2 Sensor Interface
Pin Name Description Pin Name Description
1 GND Ground 27 UART_RXDO Uart0 Rcv
2 VSNR Voltage(battery) 28 UART_TXDO Uart0 Tx
3 INT3 GPIO 29 PWO GPIO/PWM
4 INT2 GPIO 30 PW1 GPIO/PWM
5 INT1 GPIO 31 PW2 GPIO/PWM
6 INT0 GPIO 32 PW3 GPIO/PWM
7 BAT_MON Battery Monitor

Voltage
33 PW4 GPIO/PWM

8 LED3 Green Led 34 PW5 GPIO/PWM
9 LED2 Yellow Led 35 PW6 GPIO/PWM
10 LED1 Red Led 36 ADC7 GPIO/ADC CH7, JTAG
11 RD GPIO 37 ADC6 GPIO/ADC CH6, JTAG
12 WR GPIO 38 ADC5 GPIO/ADC CH5, JTAG
13 ALE GPIO 39 ADC4 GPIO/ADC CH, JTAG
14 PW7 GPIO 40 ADC3 GPIO/ADC CH3
15 USART1_CLK Usart clock 41 ADC2 GPIO/ADC CH2
16 PROG_MOSI Programmer Pin 42 ADC1 GPIO/ADC CH1
17 PROG_MISO Programmer Pin 43 ADC0 GPIO/ADC CH0
18 SPI_CLK Radio Clock 44 THERM_PWR GPIO
19 USART1_RXD Usart1 receive 45 THRU1 Thru user connect
20 USART1_TXD Usart1 xmit 46 THRU2 Thru user connect
21 I2C_CLK I2C bus clock 47 THRU3 Thru user connect
22 I2C_DATA I2C bus data 48 RSTN uP reset
23 PWMO GPIO 49 PWM1B GPIO
24 PWM1A GPIO 50 VCC Voltage (battery)
25 AC+ GPIO 51 GND ground
26 AC- GPIO
Blue: OK to use
Yellow: OK to use but has shared functionality
Red: Do no use
See Atmega128 specification for more information regarding signal functionality.

36

Mica2 Sensor Interface

19

37

Mica2Dot Sensor Interface

P IN D E S C R IP T IO N

T P 1
T P 2
T P 3
T P 4
T P 5
T P 6
T P 7
T P 8
T P 9
T P 10
T P 11
T P 12
T P 13
T P 14
T P 15
T P 18
T P 19
T P 20
T P 21

G N D
A D C 7
A D C 6
A D C 5
A D C 4
V C C
P W 1
P W 0
U A R T _T X D
U A R T _R X D
R E S E T N
S P I_ C K
A D C 3
A D C 2
P W M 1B
G N D
IN T 1
IN T 0
T H E R M _P W R

P IN D E S C R IP T IO N

T P 1
T P 2
T P 3
T P 4
T P 5
T P 6
T P 7
T P 8
T P 9
T P 10
T P 11
T P 12
T P 13
T P 14
T P 15
T P 18
T P 19
T P 20
T P 21

G N D
A D C 7
A D C 6
A D C 5
A D C 4
V C C
P W 1
P W 0
U A R T _T X D
U A R T _R X D
R E S E T N
S P I_ C K
A D C 3
A D C 2
P W M 1B
G N D
IN T 1
IN T 0
T H E R M _P W R

• 6 ADC Channels

• 6 I/O Channels

38

Power Budgets
SYSTEM SPECIFICATIONS
Currents

value units
Micro Processor (Atmega128L)
current (full operation) 6 ma
current sleep 8 ua
Radio (Chipconn 1000)
current in receive 8 ma
current xmit 12 ma
current sleep 2 ua
Flash Serial Memory (AT45DB041)
write 15 ma
read 4 ma
sleep 2 ua
Sensor Board
current (full operation) 5 ma

Average, full operation, current: ~15 ma

AA Batteries are ~1800ma which mean ~ 120hrs (5 days)

20

39

Batteries

• AA – standard, 1800ma hours. Slow decay. Best price.

•Lithium – 3.6, fast decay, more expensive.

•Beware of low battery voltage (adc, flash programming…..)

•DC Booster may/may not help

•UCB Mica2Dot NiMH 3AH, single cell, with booster and recharge.

40

Crossbow Sensor Boards

ProtoypingMICA2DOTMDA300CA

Weatherboards Mica2DotNot
released:

GPS weatherboardMica2MTS400/420

On board humidity/temp. External sensors.Mica2MDA300CA

PrototypingMica2DotMTS500CA

Light, Temperature, Acoustic, Sounder,
2-Axis Accelerometer (ADXL202), and
2-Axis Magnetometer

MICA, MICA2MTS300CA

Light (photo resistor)
Temperature (Thermistor)
Prototyping area

MICA,MICA2MTS101CA

SensorsMote SupportPart #

See MTS/MDA Sensor and Data Acquisition Boards User’s Manual

21

41

MTS101CA
•Light photo resistor-Clairex CL94L

• Thermistor - YSI 44006,

•Both sensor are highly non-linear.

•Good prototyping area.

PW2

R3
10K, 5%

RT1
Thermistor

gnd_analog

ADC5

PW1

R1
10K, 5%

R2
Photoresistor

gnd_analog

ADC6

To use this sensor board add (modify) the
apps/app/makefile for:

SENSORBOARD = basicsb
a b c d e

1
2
3
4
5
6
7
8
9
1 0
1 1
1 2

a b c d e

U 1
1 2 7

5 12 6

T h e r m i s t o r (R T 1)

L i g h t S e n s o r (R 2)

a b c d e
1
2
3
4
5
6
7
8
9
1 0
1 1
1 2

a b c d e

U 1
1 2 7

5 12 6

T h e r m i s t o r (R T 1)

L i g h t S e n s o r (R 2)

42

MDA500CA

• Prototyping board for mica2dots

22

43

MTS300CA/MTS310CA

SENSORBOARD = micasb

• Light (Photo)-Clairex CL94L
• Temperature-Panasonic ERT-J1VR103J
• Acceleration-ADI ADXL202

– 2 axis
– Resolution: ±2mg

• Magnetometer-Honeywell HMC1002
– Resolution: 134µG

• Microphone
• Tone Detector
• Sounder

– 4.5kHz

44

MTS400/420 – GPS/Weather
• Gps (LeadTek 9546) - optional

• SiRFstartII LP chipset (60ma)

• External active antenna.

• 12 channels

• 15 Meter (SA off); 7 Meter (WAAS
corrected)

• DC Booster to maintain required
voltage

•Temperature & Humidity (Sensirion
SHT11).

• All digital (14 bits)

• 3.5% RH accuracy, 0.5degC
Temperature accuracy

23

45

MTS400/420 – GPS/Weather
•Barometric Pressure and Temperature
(Intersema MS5534A)

• All digital

• 300 to1100 mbar, 3% accuracy

• -10 to +60 degC, 3% accuracy

• Ambient Light (TAOS TSL2250)

•All digital

•400-1000nm response
•Acceleration-ADI ADXL202

–2 axis
–Resolution: ±2mg

•2 K EEPROM for user configuration info.

46

MDA300

http://www.cens.ucla.edu/~mhr/daq/

• 8 External Analog Inputs
– External Sensors
– Hi and low level signals
– Block Screw Terminal

• 8 channel digital I/O
• 2 relays
• On board 12-bit ADC

– 0-2.5V, 0-3V, 0-5V Ranges
• Stable 2.5V Reference
• 3V and 5V power
• Designed by UCLA CENS w/

Crossbow and UCB

24

47

• Resolution: 400 µGauss
• Very low power
• Three axis

PNI- Magnetometer/Compass

48

Ultrasonic Transceiver

• Used for ranging
• Up to 2.5m

range
• 6cm accuracy
• Dedicated

microprocessor
• 25kHz element
• Mica2 and

Mica2Dot
versions

25

49

Mica2Dot WB
• UCB environmentally packaged weatherboards for GDI

•Temperature & Humidity (Sensirion SHT11).

• All digital (14 bits)

• 3.5% RH accuracy, 0.5degC Temperature accuracy

•Barometric Pressure and Temperature (Intersema MS5534A)

• All digital

• 300 to1100 mbar, 3% accuracy

• -10 to +60 degC, 3% accuracy

•Ambient Light (TAOS TSL2250)

•All digital

•400-1000nm response

• Photosensitive Light Sensor..

50

Mote In Tires
• Real time control of vehicle dynamics.

•3 bridge accelerometers (500g-1000g)
mounted in tire.

• Sensor board has 3 channels of
amplifiers, filters, programmable D/As for
bridge balancing.

•Monitor and analyzed acceleration forces
when tire is in contact with ground.

• Transmit results every revolution.

• 3 motes, 1 master, 2 slaves.

26

51

Micro Radar
•Darpa project: Detect intruders with micro-powered
radar detectors and relay data through mote network.

•Drop detectors from UAV (ex: Predator)

•Ghz Doppler radar detector.

• Done with LLL and Advantaca

52

COTS-BOTS (UCB)

• 5” x 2.5” x 3” size
• <$250 total
• 2-axis accelerometer

27

53

Robomote (USC)
• Less than 0.000047m3

• $150 each
• Platform to test algorithms for adaptive wireless networks with

autonomous robots

54

MICAbot (Notre Dame)

• Designed for large-scale research in
distributed robotics and ad-hoc wireless
networking.

• $300 each

28

55

Ratiometric Adcs & Sensors

• Atmega128 is 10 bit (1024) ratio metric ADC

• If sensor is ratio metric then don’t have to
measure battery voltage. (Sensor’s FS changes
with battery voltage).

•Ratio metric sensors may not work over full range
of battery voltage.

•ADC full scale is proportional to battery voltage.

• Must measure battery voltage to get accurate
sensor readings:

Battery Volts = RefVolt*ADC_FS/data

•Mica2 and Mica2Dot have on-board voltage
references to calibrate the ADC full scale.

/contrib/xbow/apps/XSensorMica2

ADC Output vs Battery
Voltage for 1.5V input

500
520
540
560
580
600
620
640
660
680
700

2 2.5 3 3.5

56

Enclosures for Environmental
Monitoring

29

57

Mica2Dot Enclosures
Weather Sensors

O-Ring

Battery

On/Off

Battery Interface Board

58

Sensor Power Management
• Simple Strategy for Low Power Sensors:

• Use Atmega output pins to source sensor power.

• Will source ~5-10ma of current per pin.

• Analog Switch Strategy

• Use hardware I2C (mica2) or software I2C
(mica2dot) (in Sourceforge)

• Switch connects sensor power to VCC.

• ADG714 switch has 2.5 ohm on resistance

• DC-DC Booster Strategy

• Create battery independent, constant supply
voltage.

• Create +5 V or more

• Turn on booster from analog switch or Atmega

• Boosters are ~80%-90% efficient. Need good layout
and decoupling. Not ratiometric

PW2

R3
10K, 5%

RT1
Thermistor

gnd_analog

ADC5

Accel_Power

Light_Power

5V_DC-DC_Shutdown

VCC

R10
1M

I2C_BUS_1_DATA

EEPROM_Power

R12
1M

Pressure_Power

I2C_BUS_1_CLK
R11
1M

R17
1M

R19
1M

R9
1M

Accel_Out

I2C_BUS_1_DATA

U7 ADG715BRU

5
7
9

11
14
16
18
20 19

17
15
13
12
10
8
6

3
1

24
22

2
421

23

S1
S2
S3
S4
S5
S6
S7
S8 D8

D7
D6
D5
D4
D3
D2
D1

SDA
SCLK

A0
A1

VC
C

GN
D

VS
S

RST

3.3V_DC-DC_Shutdown

Humidity_Power

I2C_BUS_1_CLK

Power
Switches

R13
1M

30

59

Mote Programming and Base Station
Boards

Overview:

• MIB500 Parallel Port Programmer

• MIB510 Serial Port Programmer

• eMote

• USB

60

MIB500
•Programs mote through the PC’s parallel port

•Supports Mica, Mica2, Mica2Dot

•Voltage monitor to protect from low battery voltage.
Low battery voltage can cause fuse errors.

•Serial port for base station operation

•Parallel port can cause flash corruption on some
computers due to uisp parallel port drivers. THESE
MAY BE IRRECOVERABLE

• Crossbow application note at www.xbow.com to
help fix uisp problems.

• JTAG connector: AVRStudio and JTAG pod allows
viewing and setting all fuses.

31

61

MIB510
• Q3 release

•Programming through the serial port.
On board ISP uP is 3x faster than
parallel port.

•Shares serial port with mote for base
station operation.

•Voltage monitor to protect from low
battery voltage

• Suports Mica (Atmega128 uP only),
Mica2, Mica2Dot

• JTAG port powered directly.

62

USB
• Q4 release

•USB interface for programming and base station
operation .

•Power supplied thru USB.

32

63

eMote

Ethernet connection as serial forwarder.

•Programming through ethernet.

• Remote base station operation through
ethernet.

• Remote powered ethernet sensor.

• Remote code debugging through ethernet.
Ideal for mote network debug.

• Similar configuration (eprb) used
extensively at UCB for mote development.

MOTE

ISP uP

E
thernet

Serial

Serial

SENSOR BOARD

