Bringing Organization to our
Code
(the shared-data problem)

Reference: An Embedded Software
Primer

By David E. Simon
(two copiesin lab for checkout)

Figure 4.4 Classic Shared-Data Problem
Static int iTemperatures[2];

Void interrupt vReadTemperatures (void)

{
iTemperatures[0] =!! read in value from hardware
iTemperatures[1] =!! read in value from hardware

void main (void)

{
int iTempO, iTempl,;

while (TRUE)
{
iTempO = i Temperatures[0];
iTempl = iTemperatures[1];
if (iITempO !=iTempl)
I Set off howling alarm;

4. INTERRUPTS

e 4.3 The Shared-Data Problem

Shared variables used in both interrupt and task codes for communication

Theinterrupt routine is activated whenever an event occursto handle it, caused by either
1) hardware interrupt attached to a sensor or 2) atimer interrupt causing period check or
event-occurrence

e Problem? When interrupt occurs between the two statements
e iTemp0= ...setto73
o (interrupt occurs and handler isinvoked to set both iTemperatures|] to 74)
e iTempl= ..setto74
e If() ... will be TRUE to cause an dlarm, when it shouldn’'t

4. INTERRUPTS

e The Shared-Data Problem

Fig4.5and Fig 4.6

Codein Fig 4.5 eliminates setting of local variables, but interrupt can still occur within
the if()-statement, causing afalse-alarm to be called.

e CodeinFig 4.6 liststhe assembly version, which shows that an interrupt can occur after
the MOVE R1, ... instruction and before MOVE R2, Sincethefirst MOVE
operation takes a few microseconds to execute before the second MOV E operation,
enough time for the hardware to assert an interrupt signal

e Theinterrupt routine does not change the valuesin R1 after the call — saved on the stack

Figure 4.5 Harder Shared-Data Problem
Static int iTemperatures[2];

Void interrupt vReadTemperatures (void)

{
ITemperatures[0] =!! read in value from hardware
iTemperatures[1] =!! read in value from hardware
}
void main (void)
{
int iTempO, iTempl,
while (TRUE)
{
if (iTemperatures[0] !=iTemperatures[1])
Il Set off howling alarm;
}
}

Figure 4.6 Assembly Language Equivalent of Figure 4.5

MOVE R1, (iTemperatures[0])
MOVE R2, (iTemperatures[1])
SUBTRACT R1, R2

JCOND ZERO, TEMPERATURES_OK

; Code goes here to set off the alarm

TEMPERATURES_OK:

4. INTERRUPT

e 4.3 The Shared-Data Problem - 2

e Solving the Shared Data Problem
— Usedisable and enable interrupt instructions when task code accesses shared data

— Codein Fig 4.7 solves the problem, since even if the hardware asserts an interrupt
signal to read the new temperature values (in the handler), the microprocessor will
complete the task code first

— If thetask codeisin C, the compiler will insert enable/disable instructionsin the
corresponding assembly code (See Fig 4.8)

— If thetask codein C doesn’t have enable/disable constructs, then the embedded
programmer must use other mechanisms to allow enable/disable of interrupts

— Other ways: Atomic or Critical Section code segments for enable/disable interrupt

Figure 4.7 Disabling Interrupts Solves the Shared
Data Problem from Figure 4.4

Static int iTemperatures[2];

Void interrupt vReadTemperatures (void)

{
iTemperatures[0] =!! read in value from hardware
iTemperatures[1] =!! read in value from hardware
};/oid main (void)
{
int iTempO, iTempl,;
while (TRUE)
{

disable (); /* Disable interrupts while we use the array *
iTempO = iTemperatures[0];
iTempl = iTemperatures[1];
enable ();
if (iTempO !=iTempl)
Il Set off howling alarm;

Figure 4.8 Disabling Interruptsin Assembly Language

DI ; disable interrupts while we use the array
MOVE R1, (iTemperatures[0])

MOVE R2, (iTemperatures[1])

El ; enable interrupts again

SUBTRACT R1, R2
JCOND ZERO, TEMPERATURES_OK

; Code goes here to set off the alarm

TEMPERATURES OK:

4. INTERRUPTS

4.3 The Shared-Data Problem - 3

Atomic/Critical Section —segment/block of code whose statements must be executed, without
interruption because common/shared data is being accessed, in a fixed microprocessor cycles

Needed in task code when variables/data are shared. (Non-shared data can be accessed or processed
anywhere else in the task code.)

Fig 4.9 shows an exampl e task code, which can return wrong results if the timer asserts an interrupt
during the calculations in the if()-statement

Fig 4.10 is asolution, such that even if the codeis called in the critical section of some part of the
task code, the enable/disable protections will avoid inadvertent ‘enabling’ of the interrupt in the
middle of that critical section

Fig 4.11 lists a solution that works when the assembly code for the return statement is along-
MOVE. It doesn'tif it takes multiple short-M OV E operations

Fig 4.12 lists a solution that reads/re-reads time value without using explicit enable/disable. It works
best if compiler optimization isin check to avoid skipping the re-read or while statement by using
the volatile keyword to declare the shared data/variable

Figure4.9 Interrupts with a Timer

Staticint iSeconds, iMinutes, iHours;
Voidinterrupt vUpdateTime (void)

{

}

++iSeconds;
if (iSeconds >= 60)
{
iSeconds = 0;
++iMinutes;
if (iMinutes >= 60)
{
iMinutes = 0;
++iHours;
if (iHours >= 24)
iHours = 0;
}
}

!l Do whatever needs to be done to the hardware

long |SecondsSinceMidnight (void)

{
}

return ((((iHours * 60) + iMinutes) * 60) + iSeconds);

Figure 4.10 Disabling and Restoring Interrupts

long |SecondsSinceMidnight (void)

{

long IReturnVal;
BOOL flInterruptStateOld; /* Interrupts already disabled? */

fInterruptStateOld = disable ();
IReturnVal = (((iHours* 60) + iMinutes) * 60) + i Seconds;

/* Restore interrupts to previous state */
if (finterruptStateOld)
enable ();

return (IReturnval);

Figure 4.11 Another Shared-Data Problem Solution
Static long int 1SecondsToday;
Void interrupt vUpdateTime (void)

{
++ |SecondsToday;
if (ISecondsToday = =60 * 60 * 24)
|SecondsToday = OL;
}
long |1SecondsSinceMidnight (void)
{
return (ISecondsToday);
}

Figure4.12 A Program That Needs the
vol ati |l e Keyword

Static long int |SecondsToday;

Void interrupt vUpdateTime (void)

{
++|SecondsToday;
if (ISecondsToday ==60* 60 * 24)
|SecondsToday = OL;
}
long |SecondsSinceMidnight (void)
{

long IReturn;

/* When we read the same value twice, it must be good. */
IReturn = |SecondsToday;
while (IReturn !=|SecondsToday)

IReturn = 1SecondsT oday;

return (IReturn);

4. INTERRUPTS

4.4 Interrupt Latency
How long doesit take for my embedded system to respond to external stimulus (or
interrupt), when the signal is asserted?
Depends on:;
— 1. How long istheinterrupt disabled (servicetime or handling time)
— 2. Timeit takes to execute/handle the higher priority interrupt (than the current one)
— 3. Timeit takes the microprocessor to save context and jump to the handler
— 4. Timeit takes the handler to save the context and start ‘responsive’ work

Measuring each of the time periods
- 124

e (i) Write short and efficient code and measure how long it takes to run (system time), eliminating
unrelated/auxiliary code (that can be handled differently) from the handler itself

o (i) Look-up and add-up theinstruction cycle times for individual instructions
— 3: Look-up from the microprocessor manufacturer’s manuals

4. INTERRUPTS

4.4 Interrupt Latency — 1
Latency as afunction of the time an interrupt is disabled

E.g., given (the following parameters of a system):
— Disabletime: 125 usec for accessing shared variablesin task code
— Disabletime: 250 usec for accessing time variables/values from atimer interrupt
— Disabletime: 625 usec for responding to interprocessor signals

Will the system work under these constraints?

— Yes, because after the first 125 usec (task code), the timer and processor interrupt requests will
be asserted: the next 250 usec the timer is handled, at which point the clock value will be 375
usec. The processor isthen handled (after the 250 usec time), for the next 375 usec — plenty of
time to finish before the 625 usec deadline.

— (SeeFig4.13)
— If themicroprocessor speed is cut in half, all handling and disabled times will double, and
under the same constraints, the system will not work.

— Adding anetwork handler with higher priority (than the processor), will cause latency problems
and won't work (See Fig 4.14)

Figure 4.13 Worst Case Interrupt Latency

—

IRQ

Processor getsto ISR does
interprocessor |SR. Critical work.

Task code \ \
ﬁabl esinterrupts.

| L

/ |<— 250 psec —>|
I nterprocessor

interrupt occurs. i‘— 300 pisec 4’|

|<7 Time to deadline: 625 psec 4>|

Figure4.14 Worst Case Interrupt Latency

Processor getsto

interprocessor ISR. ISR does
Frocessar gasto Critical work.
Task code &
disabl es interrupts |

Network
Interrupt Tl
Occurs.

IRQ 4, I_

/ |4— 250 pusec —>|
Interprocessor —’| |4— 100 psec

interrupt occurs

l<

| 300 psec ql

[e———— Timeto deadline: 625 psec —————>

4. INTERRUPTS

e 44 Interrupt Latency - 2

e Avoiding the Disabling of Interrupts

— Write task and handler code so that both code segments write to, or read from, different parts
(buffers) of a shared data structure

— Fig4.15-Arrays A and B, shared between both codes but never accessed at sametime

— Fig4.16 — A queue structure is shared, but task code read from previously written temp values
(different cellsin the queue), while the handler writes ahead of the task code

Figure 4.15 Avoiding Disabling Interrupts

Static int iTemperaturesA[2];
Static int iTemperaturesB[2];
Static BOOL fTaskCodeUsingTempsB = FALSE;

Void interrupt vReadTemperatures (void)

{

if (fTaskCodeUsingTempsB)

{
iTemperaturesA[0] =!! read in value from hardware
iTemperaturesA[1] =!! read in value from hardware

}

else

{
iTemperaturesB[0] = !! read in value from hardware
iTemperaturesB[1] =!! read in value from hardware

}

} (continued)

Figure 4.15 (continued)

void main (void)
{
while (TRUE)
{
if (fTaskCodeUsingTempsB)
if (iTemperaturesB[0] !=iTemperaturesB[1])
Il Set off howling alarm;
else
if (iTemperaturesA[Q] !'= iTemperaturesA[1])
Il Set off howling alarm;

fTaskCodeUsingTempsB = ! fTaskCodeUsingTempsB;

}
}

Figure4.16 A Circular Queue Without Disabling Interrupts
#define QUEUE_SIZE 100

int iTemperatureQueue] QUEUE_SIZE];
int iHead =0; /* Place to add next item */
int iTal =0; /* Place to read next item */

void interrupt vReadTemperatures (void)
[* If the queueisnot full ... */

if (1((iHead + 2 == iTail) ||
(iHead = = QUEUE_SIZE - 2 && iTail = = 0)))

{
i TemperatureQueuel[iHead] = !! read one temperature;
i TemperatureQueue[iHead+1] =!! read other temperature;
iHead += 2;
if ((Head = = QUEUE_SIZE)
iHead = 0;
else !l throw away next value

} (continued)

Figure 4.16 (continued)

void main (void)

{
int iTemperaturel, iTemperature2;
while (TRUE)
{
/* If thereisany data. . . */
if (ITail !=iHead)
{
iTemperaturel = i TemperatureQueue|iTail];
iTemperature2 = iTemperatureQueuefiTail + 1];
iTal +=2;
if (iTail == QUEUE_SIZE)
iTal =0;
Il Do something with iValue;
}
}
}

SURVEY OF SOFTWARE

ARCHITECTURES

5.0 SURVEY OF SOFTWARE ARCHITECTURES

e 5.0Overview

— Thebasic ‘computational model’ that helps structuring or organizing the components of
your embedded software

— The underlying criterion is. how much (logical) control is needed to satisfy the required
system ‘response time.’
— Other factors affecting ‘response’ are: processor speed, system overhead
— Guides:
« A simple architecture: if response timeis not amagjor issue
o A complex architecture: if there are multiple, rapid deadline and priority requirements

— Topics:
« Round-robin - simple
o Round-robin with interrupts - fairly complex
¢ Function-queue-scheduling - complex
o Real-time operating system - very complex

Round-Robin

Figure 1: Basic cyclic executive

]

5.0 SURVEY OF SOFTWARE ARCHITECTURES

e 5.1 Round-Raobin Architecture
e Advantages.
- Simple
— No interrupts and no shared data
— No response latency (and no overhead)

— More suitable for systems that require one-at-a-time operation (e.g., digital
watches, microwave ovens with ssimple functionality)

e Disadvantages.
— If any device or service/processing needs response in less time than it takes

the microprocessor to complete processing any system component (e.g., a
loop, amodule, abasic functionality) — then RR won’t work

— Adding more functionality, devices, or service/processing introduces
potential ‘timing’ or ‘response time’ problems, which weakens the RR arch

Figure 5.1 Round-Robin Architecture

void main (void)
{
while (TRUE)
{
if (/! I/0 Device A needs service)
{
!l Take care of I/0 Device A
!! Handle data to or from I/0 Device A
1
if (1! I/0 Device B needs service)
{
11 Take care of I/0 Device B
!l Handle data te or from I/0 Device B
1
etc.
etc.
if (1! I/0 Device Z needs service)
{
1! Take care of I/0 Device Z
Il Handle data to or from I/0 Device Z

Figure 5.2 Digital Multimeter

Probes

10 10 !
Amps 1 100 Volts

Figure 5.3 Code for Digital Multimeter

void vDigitalMultiMeterMain (void)

{
enum {OHMS_1, OHMS_10, ..., VOLTS_100} eSwitchPosition;

while (TRUE)
i
eSwitchPosition = /! Read the position of the switch;

switch (eSwitchPasition)
{
case OHMS_I:
Il Read hardware to measure ohms
Il Format result 2
break:
case OHMS_10:
!l Read hardware to measure’ ohms
!l Format result
break;

case VOLTS_100:
!{ Read hardware to measure volts
!! Format result
break;
? .
Il Write result to display

5.0 SURVEY OF SOFTWARE ARCHITECTURES

e 5.2 Round-Robin with Interrupts
— Offersmore control over priorities via hardware interrupts
— Interrupt handlers implement higher priority functions (allowing the assignment of levels of
priority among devices/handlers)
— Thehandlers set flags, which are polled by the task code to continue when the handlers
complete their job

— Advantage:

e Setting and controlling using priorities
— Disadvantage:

o Danger of having shared data

o Priorities set in hardware

Figure 5.4 Round-Robin with Interrupts Architecture

BOOL fDeviceA = FALSE;
BOOL fDeviceB = FALSE;

I;OOL fDeviceZ = FALSE; void main (void)

void interrupt vHandleDeviceA (veoid) { while (TRUE)

{ (
R e

. fheviceh = FALSE;

void interrupt vHandleDeviceB (void) /I Handle data to or from 1/0 Device A

£ }

! Take care of I/0 Device B if (fDevices)

fDeviceB = TRUE; {
1 ’ fDeviceB = FALSE;
: !! Handle data to or from I/0 Device B
void interrupt vHandleDeviceZ (void) l }
[+

!l Take care of I/0 Device Z ’

fheviceZ = TRUE; if (fDevicel)
}

{

fleviceZ = FALSE;
!! Handle data to or from 1/0 Device Z

Figure 5.5 Priority Levels for Round-Robin Architectures

Round-robin Round-robin
with interrupts
High-priority
processing
Device A ISR
Device B ISR

Device C ISR

Everything Device D ISR

Device ... ISR
Device Z ISR
All Task Code
Low-priority
processing

5.0 SURVEY OF SOFTWARE ARCHITECTURES

e Characteristics of the Round-Robin with Interrupts

— Low priority tasks could experience longer delays, if higher priority tasks execute
code (outside their critical section) which take along time

— Example: If task A takes 200 ms to execute code outside its CS, then the
waiting/response time for lower priority tasks B, C, will be so increased

— Moving out-of-CS code for B and C into their interrupt handlers will help regain
some time or indirectly increase their priority levels. Meaning, the handlersfor B
and C will also take 200 ms more to execute, increasing the overall response time
forBand C

— Oneway to improve the response time of atask with lower priority isto ‘check’ its
status flag more frequently than others’ (typical RR techniquein OS)

e Summary: Any task which is a processor hog will not be good to model using
a RR with interrupt architecture, since response time will be bad!

5.0 SURVEY OF SOFTWARE ARCHITECTURES

e 5.3 Function-Queue-Scheduling Architecture

— Improves the response time of higher priority tasks.
— Interrupt routines add function-pointers to a queue for the main task to execute
— Themain task continuously scans the queue and executes the corresponding function

— Allows placing function-pointers in the queue based on preferred priority scheme (placement is
done by a supporting/auxiliary routine invoked by the handlers)

— Characteristics:
e Theworst-case response time for highest-priority tasksis: sum(longest task code, any interrupts this code
generates), and not the sum of the response times of al the handlers
e The response time for lowest-priority tasks could be long when their code segments are long

Figure 5.8 Function-Queue-Scheduling Architecture

!l Queue of function pointers;

void interrupt vHandleDeviceA (void)

{

/! Take care of If0 Device A

! Put function_A on queue of function pointers
}
void interrupt vHandleDeviceB (void)
t

Il Take care of I/0 Device B

Il Put function_B on queue of function pointers
}

(continued)

Figure 5.8 (continued)

void main (void)
{
while (TRUE)
{
while (!!Queue of function pointers is empty)

{1 Call first function on queue
}
}

void function_A (void)
{

!! Handle actions required by device A
}

void function_B (void)
{ ;

!! Handle actions required by device B
}

Reference:

An Embedded Software Primer
By David E. Simon
(two copiesin lab for checkout)

