
CSE466 Autumn ‘00- 1

Embedded Software Architectures

q No Operating System
Round robin: sequential polling for events
Round robin w/ interrupts
Function Queue Scheduling

q Real Time Operating Systems



CSE466 Autumn ‘00- 2

Overall Architecture

Host

Serial Task
enqueu()
do protocol w/
Host

Event Task
dequeue()
decode()

Tone Task
out = f(…)
Slice--;

queue

global
variables



CSE466 Autumn ‘00- 3

FIFO

q Empty Condition
Tail = Head
§ Tail is place to get next byte if != head

q Initial Condition
Same as empty condition

q Full Condition
Head = (Tail –1)
§ Head is place to put next byte if not right behind tail



CSE466 Autumn ‘00- 4

FIFO Queue

q Event Task
If (not empty) get item, move “tail” pointer
else what?

q Serial Task
If (not full) put item, move “head” pointer,

and acknowledge received byte
else what?

q When writing this code:
Think of Event and Serial as parallel processes running on separate
computers using shared memory to communicate: why?



CSE466 Autumn ‘00- 5

Example

q Queue size is SIZE
In Event Task

void Event () {
while (head == tail); // wait until queue not empty
data = queue[tail];
tail = tail + 1
if (tail == SIZE) tail = 0;
process(data);

}
q Do we have a problem?

If serial gets control after tail is incrememted pasted the end of the queue,
the serial process could fail to detect when the queue if full, causing data to
be lost due

q Solution?
Disable serial interrupts during critical section

q Note, we assume that Event is interruptable, so we make blocking on empty
queue.
and we assume that event is run only when the time slice runs out.



CSE466 Autumn ‘00- 6

Safe Queue?

void Event() {
while (head == tail); // wait until queue not empty
data = queue[tail];
ES = 0; // disable serial interrupts
tail = next(tail);
ES = 1 // enable serial interrupts
process(data);

}
unsigned char next(unsigned char ptr) {

if (++ptr == SIZE) ptr = 0;
return(ptr);

}



CSE466 Autumn ‘00- 7

Consider the compiler

C code for blocking queue
void Event() {

while (head == tail);
data = queue[tail];
ES = 0;
tail = next(tail);
ES = 1
process(data);

}
unsigned char next(unsigned char ptr) {

if (++ptr == SIZE) ptr = 0;
return(ptr);

}

Compiler output?
MOV R0,TAIL
MOV R1,HEAD

LOOP: MOV A,R1
SUBB A,R0
JZ LOOP
MOV R3,#QUEUE
ADD R3,R0
MOV R4, @R3
CLR ET0
ACALL NEXT
MOV TAIL,A
SETB ET0

Assume next() operates on R0, returns in A



CSE466 Autumn ‘00- 8

I think we�re safe now

volatile data unsigned char head, tail;
…

viod Event() {

while (head == tail);

data = queue[tail];

ES = 0;

tail = next(tail);

ES = 1

process(data);

}

unsigned char next(unsigned char ptr) {

if (++ptr == SIZE) ptr = 0;

return(ptr);

}

MOV R0,TAIL
LOOP: MOV R1,HEAD

MOV A,R1
SUBB A,R0
JZ LOOP
MOV R3,#QUEUE
ADD R3,R0
MOV R4, @R3
CLR ET0
ACALL NEXT
MOV TAIL,A
SETB ET0

*compiler knows that sfr’s are volatile (ports, flags)



CSE466 Autumn ‘00- 9

M-BOX in Round Robin Arch.

volatile bit fTNEexpired;
void main (void) {

if (TF0) tone(); // process timer, set expired bit
if (R1) serial(); // process serial input
if (fTNEexpired) event();

}

Would this work for the M-BOX?

How do we know?



CSE466 Autumn ‘00- 10

Task Diagram

Worst case: character arrives one cycle before TF0
Worst Case Latency = Σmax run time of all other tasks

What is the worst
case serial processing
time?
Depends on response message
length--could be bad!
How much latency can we
tolerate? Practically none

main

tone

serial

char arrives
timer0 overflow occurs (TF0)

serial task main

w.c. latency deadline



CSE466 Autumn ‘00- 11

Round Robin w/ Interrupts

volatile bit fEvent;
void timer_isr(void) {

time_critical_processing();
if (…) fTNEexpired = TRUE;

}
void main (void) {

if (R1) serial_input_task();
if (fTNEexpired) {

Event();
fEvent = FALSE;

}
}

Why not put Event() into the ISR too?
Then our worst case latency to a other time critical processing would be poor

Would this work for the M-BOX? See next slide



CSE466 Autumn ‘00- 12

M-BOX in RR+INT

volatile bit fEndOfSlice, fSerial;
void tone_isr(void) interrupt … {

process_tones();
if (!--sliceCount) {

changeTones();
sliceCount = SliceSize
fEndOfSlice = TRUE;

}
}
void serial_isr(void) interrupt …{

timeCritical();
fSerial = TRUE;

}

main () {
if (fSerial) {process_serial_data(); fSerial = FALSE;}
if (fEndOfSlice) {

if (--TNE==0)
process_next_event();

fEndOfSlice = FALSE;
}

}

What are the time critical
functions?
compute output, timeslice
countdown

What are the event
functions?
TNE count down event
decoding (TNE, Tones)

Do these have hard time
constraints too?
Yes, one time slice, is it
good enough? Not
necessarily…serial is
undefined!



CSE466 Autumn ‘00- 13

Task Diagram

Worst case analysis: character comes one cycle before TF0
Worst case latency: for ISR: sum of all same or higher priority
ISR’s. For tasks: Sum of all tasks
. Advantage over RR: Critical Stuff happens in ISR

main

Event

Serial

char arrives
timer0 overflow occurs (TF0)

Can we do better?

timer_isr

time slice start time slice end

deadline

serial_isr



CSE466 Autumn ‘00- 14

Function Queue

void isr(void) interrupt … {
process_tones();
if (!--sliceCount) {

changeTones();
sliceCount = SliceSize;
enq(Event);

}
}
void serial(void) interrupt …{

SerialTimeCritical();
enq(Serial);

}

void main(void) {
while (1) if (f = deq()) { *f());

}

What is the
advantage of this?
Programmer can
set priority for task
functions.

Worst case latency
for priority n task
function? Sum of
max execution time
for all task
functions of
priority > n + max
current task

You get a scheduling opportunity
every time a task completes.



CSE466 Autumn ‘00- 15

Task Diagram

Worst case analysis: character comes one cycle before TF0
Worst case latency: for ISR: sum of all higher or equal priority
ISR’s, for Task: Max Task + Sum of all higher or equal priority
tasks. Advantage over RR: Priority scheduing of tasks and
ISR’s

main

housekeeping

serial

char arrives
timer0 overflow occurs (TF0)

Can we do better?

isr

time slice start time slice end

deadline

serial_isr



CSE466 Autumn ‘00- 16

Comparison Non OS Architectures

q See Chapter 5, table 5.1 Simon


