
CSE 466 – Fall 2000 - Introduction - 1

Safety

q Terms and Concepts

q Safety Architectures

q Safe Design Process

q Software Specific Stuff

q Sources
Hard Time by Bruce Powell Douglass, which references Safeware by
Nancy Leveson



CSE 466 – Fall 2000 - Introduction - 2

What is a Safe System?

Brake
Pedal

Pedal
Sensor

Processor Bus

Brake
w/ local

controller

Engine
w/ local

controller
Is it safe?

What does “safe” mean?

How can we make it safe?

Add
electronic watch dog
between brake and bus

Add mechanical linkage
from separate brake pedal
directly to brake

Add a third mechanical linkage….



CSE 466 – Fall 2000 - Introduction - 3

q Reliability of component i can be expressed as the probability that
component i is still functioning at some time t.

q Is system reliability Ps (t) = ΠPi(t) ?

q Assuming that all components have the same component reliability, Is a
system w/ fewer components always more reliable ?

q Does component failure system failure ?

burn
in

period

Terms and Concepts

time

Pi(t) =
Probability
of being
operational
at time t

Low failure rate means nearly constant probability
1/(failure rate) = MTBF



CSE 466 – Fall 2000 - Introduction - 4

A Safety System

q A system is safe if it’s deployment involves assuming an acceptable amount
of risk…acceptable to whom?

q Risk factors
Probability of something bad happing
Consequences of something bad happening (Severity)

q Example
Airplane Travel – high severity, low probability
Electric shock from battery powered devices – hi probability, low severity

severity

probability

danger zone
(we don’t all have the same

risk tolerance!)

airplane autopilot

mp3 player

PC

safe
zone



CSE 466 – Fall 2000 - Introduction - 5

More Precise Terminology

q Accident or Mishap: (unintended) Damage to property or harm to persons.
Economic impact of failure to meet warranted performance is outside of the
scope of safety.

q Hazard: A state of the the system that will inevitably lead to an accident or
mishap

Release of Energy
Release of Toxins
Interference with life support functions
Supplying misleading information to safety personnel or control systems.
This is the desktop PC nightmare scenario. Bad information
Failure to alarm when hazardous conditions exist



CSE 466 – Fall 2000 - Introduction - 6

Faults

q A fault is an “unsatisfactory system condition or state”. A fault is not
necessarily a hazard. In fact, assessments of safety are based on the notion
of fault tolerance.

q Systemic faults
Design Errors (includes process errors such as failure to test or failure to
apply a safety design process)
Faults due to software bugs are systemic
Security breech

q Random Faults
Random events that can cause permanent or temporary damage to the
system. Includes EMI and radiation, component failure, power supply
problems, wear and tear.



CSE 466 – Fall 2000 - Introduction - 7

Component v. System

q Reliability is a component issue

q Safety and Availability are system issues

q A system can be safe even if it is unreliable!

q If a system has lots of redundancy the likelihood of a component failure (a
fault) increases, but so may increase the safety and availability of that
system.

q Safety and Availability are different and sometimes at odds. Safety may
require the shutdown of a system that may still be able to perform its
function.

A backup system that can fully operate a nuclear power plant might
always shut it down in the event of failure of the primary system.
The plant could remain available, but it is unsafe to continue operation



CSE 466 – Fall 2000 - Introduction - 8

Single Fault Tolerance (for safety)

q The existence of any single fault does not result in a hazard

q Single fault tolerant systems are generally considered to be safe, but more
stringent requirements may apply to high risk cases…airplanes, power
plants, etc.

Backup
H2 Valve
Control

Main
H2 Valve
Control

watchdog
protocol

If the handshake
fails, then either one
or both can shut off the gas
supply. Is this a single fault
tolerant system?



CSE 466 – Fall 2000 - Introduction - 9

Next Week

q Project Presentations/Demos
Wednesday
§ Tiny OS (one day)
§ Structure of the OS, how does it work?
§ Applications, what is it like to write code

• event handling

• communications
• examples

Monday demos
§ Lake Analysis (Forget about funding from the new EPA)
§ Modem
§ Gravity Mouse
§ MBOX Alarm



CSE 466 – Fall 2000 - Introduction - 10

The Final

q Something networking, related to the stack that we built in lecture
assumes a working understanding of I2C

q A safety question

q Something from previous sections



CSE 466 – Fall 2000 - Introduction - 11

Terms

q Safety: Assuming acceptable risk

q Accident: Unintended damage

q Hazard: Dangerous system state: accident is inevitable

q Fault: Conditions that lead to hazards
Systemic (design) faults
Random faults

q Reliability
System is functioning if all components are functioning

Ps(t) = ΠPi(t)
System is functioning of any component is functioning (redundancy)

Ps(t) = 1- Π(Fi(t))
probability of component failure Fi(t) = 1-Pi(t)

Example:
let P1(T) = P2(T) = 0.9
then F1(T) = F2(T) = 0.1, so Fs(T) = 0.1*0.1 = 0.01
So Ps(T) = 1-Fs(T) = .99



CSE 466 – Fall 2000 - Introduction - 12

Term (cont)

q Latent fault: a fault that does not in itself lead to a hazard, but which cannot
be detected. Must assume that the probability of this fault = 1

q Safety Architectures
Single Channel Protection
Redundancy
Diversity

q Time equation
Time to Eliminate Hazard < Tolerance Time of Hazard < Time to Next
Fault



CSE 466 – Fall 2000 - Introduction - 13

Single Fault Tolerance (for safety)

q The existence of any single fault does not result in a hazard

q Single fault tolerant systems are generally considered to be safe, but more
stringent requirements may apply to high risk cases…airplanes, power
plants, etc.

Backup
H2 Valve
Control

Main
H2 Valve
Control

watchdog
protocol

If the handshake
fails, then either one
or both can shut off the gas
supply. Is this a single fault
tolerant system?

error

error



CSE 466 – Fall 2000 - Introduction - 14

Is This?

Backup
H2 Valve
Control

Main
H2 Valve
Control

watchdog
handshake

common
mode
failures



CSE 466 – Fall 2000 - Introduction - 15

Now Safe?

Backup
H2 Valve
Control

Main
H2 Valve
Control

watchdog
handshake

•Separate Clock Source
•Power Fail-Safe (non-latching)
Valves

What about power spike that
confuses both processors at the
same time? Maybe the watchdog
can’t be software based.

Does it ever end?

Ttest<T0<T1

detection time is < than single fault tolerance time < time to second failure

have we solved this?

latent faults P = 1



CSE 466 – Fall 2000 - Introduction - 16

Safety Architectures

q Self Checking (Single Channel Protected Design)

q Redundancy

q Diversity or Heterogeneity

Brake
Pedal

Pedal
Sensor

Computer
Computer

Bus

Brake

Engine
Control

watchdog
protocol

parity/crc
Periodic internal
CRC/Checksum
computation
(code/data corruption)



CSE 466 – Fall 2000 - Introduction - 17

Single Channel Protection

q Self Checking
perform periodic checksums on code and data
How long does this take?
Is Ttest<T0<T1?
No protection against systemic faults

q Feasibility of Single Channel Protection
Fault Tolerance Time
Speed of the processor
Amount of ROM/RAM
Special Hardware
Recurring cost v. Development cost tradeoff

Computer
(code

corruption)

Computer
Bus

Brake

Engine
Control

parity/crc on the bus



CSE 466 – Fall 2000 - Introduction - 18

Redundancy

q Homogeneous Redundancy
Low development cost…just duplicate
High recurring cost
No protection against systemic faults

Computer
(code

corruption)

Brake

Engine
Control

Computer

Computer
Voting

Bus

could be implemented similar to collision
detection

what happens if you have an even number of computers?



CSE 466 – Fall 2000 - Introduction - 19

Diversity

q Heterogeneous Redundancy
Protects against random and
some systemic faults.
Best if implementation teams are kept
separated

q Space shuttle: five computers, 4 same 1 different

Proc/SW
1

Brake

Engine
ControlProc/SW

2

Voting
Bus



CSE 466 – Fall 2000 - Introduction - 20

Design Process

1. Hazard Identification and Fault Tree Analysis

2. Risk Assessment

3. Define Safety Measures

4. Create Safe Requirements

5. Implement Safety

6. Test,Test,Test,Test,Test



CSE 466 – Fall 2000 - Introduction - 21

Hazard Analysis � Working forward from hazards

0.01secSecondary
valve
opens

0.01secRareRelease
valve stuck
closed

0.05secSeverOver-
pressuriza
tion

N/ADifferent
mechanic
al fittings
for intake
and
exhaust

N/AneverUser mis-
attaches
breathing
hoses

40secC02
sensor
alarm

30secMediumEsophageal
intubation

40secIndep.
pressure
sensor w/
alarm

30secRareMotor Too
Slow

5 min.SevereHypo-
ventilation

Exposure
Time

MechanismDetection
Time

LikelihoodFault
Example

Tolerance
Time

SeverityHazard

Human
in LoopVentilator Example



CSE 466 – Fall 2000 - Introduction - 22

Fault Tree Analysis 

Satisfiability Analysis: What combinations of inputs produce the hazard
Explosion Hazard: (SystemOn * FanFailure * PlumbingLeak) +

(SystemOff * MainH2Stuck * PlumbingLeak)
Let Plumbing Leak = 1 (there is always some level of leakage

(SystemOn * FanFailure) + (SystemOff * MainH2Stuck)
Let Tdetect(FanFailure < ToleranceTime)

(MainH2Stuck * System is Off) is our biggest concern.
Mitigation: Open an valve from internal H2 plumbing when off?? Why Not?
Proper Installation Required!



CSE 466 – Fall 2000 - Introduction - 23

FMEA: Same as Hazard Analysis, but Start w/ Faults

q Failure Mode: how a device can fail
Battery: never voltage spike, only low voltage
Valve: Stuck open? Stuck Closed?
Motor or Motor Controller: Stuck fast, stuck slow?
Hydrogen sensor: Will it be latent or mimic the presence of hydrogen?

q Failure Modes and Effects Analysis
Great for single fault tolerant systems

q For each system.
Identify all failure modes and likelihoods
Identify the hazard that is produced by each failure
Determine Time tolerance for each potential hazard
Design Considerations
§ Mitigation
§ Detection

Response
§ What to do: shutdown, alarm, disable certain features, etc.

q Search space can be quite large



CSE 466 – Fall 2000 - Introduction - 24

Risk Assessment

q Risk is orthogonal to hazard analysis

q Determine how risky your system is

S: Extent of Damage
Slight injury
Single Death
Several Deaths
Catastrophe

E: Exposure Time
infrquent
continuous

G: Prevenability
Possible
Impossible

W: Probability
low
medium
high

1

2

3

4

5

6

7

8

3

4

5

7

6

-

1

2

2

3

4

6

5

-

-

1

W3 W2 W1

S1

S3

S2

G2

G1

G2

G1

S4

E2

E1

E2

E1



CSE 466 – Fall 2000 - Introduction - 25

Example Risk Assessment

8W2G2E2S4CrashAirliner

6W3--E1S3ExplosionPower
station
burner
control

5W3G2E2S2Pacing too
slowly

Pacing too
fast

Pacemaker

5W3G2E2S2IrradiationMicrowave
Oven

TUV Risk
Level

Probabil
ity

Hazard
Prevention

Exposure
Time

Extent of
Damage

HazardDevice



CSE 466 – Fall 2000 - Introduction - 26

Define the Safety Measures

q Obviation: Make it physically impossible (mechanical hookups, etc).

q Education: Educate users to prevent misuse or dangerous use.

q Alarming: Inform the users/operators or higher level automatic monitors of
hazardous conditions

q Interlocks: Take steps to eliminate the hazard when conditions exist (shut off
power, fuel supply, explode, etc.

q Restrict Access. High voltage sources should be in compartments that
require tools to access, w/ proper labels.

q Labeling

q Consider
Tolerance time
Supervision of the system: constant, occasional, unattended. Airport
People movers have to be design to a much higher level of safety than
attended trains even if they both have fully automated control



CSE 466 – Fall 2000 - Introduction - 27

Create Safe Requirements: Specifications

q Document the safety functionality
eg. The system shall NOT pass more than 10mA through the ECG lead.
Typically the use of NOT implies a much more general requirement
about functionality…in ALL CASES

q Create Safe Designs
Start w/ a safe architecture
Keep hazard/risk analysis up to date.
Search for common mode failures
Assign responsibility for safe design…hire a safety engineer.
Design systems that check for latent faults

q Use safe design practices…this is very domain specific, we will talk about
software



CSE 466 – Fall 2000 - Introduction - 28

5. Implement Safety � Safe Software

Language Features

Type and Range Safe Systems

Exception Handling

Re-use, Encapsulation

Objects

Operating Systems

Protocols

Testing

Regression Testing

Exception Testing (Fault Seeding)



CSE 466 – Fall 2000 - Introduction - 29

What happens if
void* a[SZ]; // Data Structure Definition

a[i] = (void*) x; // Range Violation?

x = (myType *)a[i]; // Range and Data Type Violation?

Ideal Error Checking Hierarchy
Automatic:

Compile Time Checking (Static) better than Run Time Checking (Dynamic)
- data types for assignments
- range
- unitialized
- Out of memory….etc.

Programmer:
Semantic error conditions (e.g array not sorted, too many users, etc)

if (i < SZ) a[i] = (void*) x; else what?? // Range Violation?

if (i < SZ) x = (myType *) a[i]; else what?? // Range and Data Type Violation?

Four Main Problems in C

1. Static analysis not defined by the language: a[5] means *(a+5), not “fifth element of the
array a”.

2. There is no run-time checking. OS checks to make sure you stay in your space.

3. Exception flow is indistinquishable from normal flow and exception handling is voluntary

4. Semantic checking onus on user of data structure



CSE 466 – Fall 2000 - Introduction - 30

Language Definition
q static analysis is up to the compiler

Define the semantics of the language to include all compile time checks
that cannot be caught at run time
§ Uninitialized variables
§ type mismatch

q The run time environment performs dynamic checks that cannot be
caught at compiler time: mainly to make sure that you never access memory
the wrong way

Null pointer access
Array out of bounds
Type mismatch even when casting
Memory Management and Garbage Collection

a[i] = (void*) x; // raise an exception
x = (myType *) a[i]; // raise and exception

What happens in the event of an exception?



CSE 466 – Fall 2000 - Introduction - 31

Exception Handling

q Its NOT okay to just let the system crash if some operation fails! You must,
at least, get into safe mode.

q In C it is up to the designer to perform error checking on the value returned
by f1 and f2. Easily put off, or ignored. Can’t distinguish error handling from
normal program flow, no guarantee that all errors are handled gracefully.

q typical C approach:
a = f1(b,c)
if (a) switch (a) {

case 1: handle exception 1
case 2: handle exception 2
…

}
b = f2(e,f)
if (a) switch (a) {

case 1: handle exception 1
case 2: handle exception 2
…

}

In C, the exception flow is
the same as the
normal flow. Use negative
numbers for exceptions?!



CSE 466 – Fall 2000 - Introduction - 32

Exception Handling in Java

void myMethod() throws FatalException {

try {

a = x.f1(b,c)

b = x.f2(e,f)

if (a) … // handle all functional outcomes here!

} catch (IOException e) {

recover and continue if that’s okay.

} catch (ArrayOutOfBoundsException e) {

not recoverable, throw new FatalException(“I’m Dead”);

} finally {

finish up and exit

}

}

All exceptions must be handled or thrown. Exceptions are subclassed so that
you can have very general or very specific exception handlers.

Separates
throwing exceptions
functional code
exception handling



CSE 466 – Fall 2000 - Introduction - 33

Encapsulation: Semantic Checking

q IN C
while (item!=tail) {

process(item);
if (item->next == null) return –1 // exception ?
item = item->next;

}

q In Java

while (item = mylist.next()) { // inside mylist is not my problem
process (item);

}

class list {
Object next() throws CorruptListException {

if (current == tail) return null;
current = current.next; // private field access okay
if (current == null) throw new CorruptListException(this.toString());
return(current.value);

}



CSE 466 – Fall 2000 - Introduction - 34

More Language Features

q Garbage collection
What is this for
Is it good or bad for embedded systems

q Inheritance
Means that type safe systems can still have functions that operate on
generic objects.
Means that we can re-use commonalities between objects.

q Re-use
Use trusted systems that have been thoroughly tested
OS
Networking
etc.



CSE 466 – Fall 2000 - Introduction - 35

Java for Embedded Systems

q Why not Java for Embedded Systems
Its slower
Code bloat
Garbage Collection may not be interruptible (Latency, predictability)
Time resolution – run time support for multithreading and
synchronization must be optimized. Java assumes the existence of a
basic operating system.
Hardware access – interrupt handlers, event handlers

q TinyOS
A Component model that seems to be good for “reactive” systems.
Probably does a good job of addressing the four major issues listed
here.



CSE 466 – Fall 2000 - Introduction - 36

Testing

q Regression Test

q Fault Seeding



CSE 466 – Fall 2000 - Introduction - 37

Safe Design Process

q Mainly, the hazard/risk/FMEA analysis is a process not an event!

q How you do things is as important as what you do.

q Standards for specification, documentation, design, review, and test
ISO9000 defines quality process…one quality level is stable and
predictable.


