
1

CSE 466 – Fall 2000 - Introduction - 1

Project Ideas

q Requirements
Implementation
Make a presentation
Make a web-page about w/ source code, technical details

q Circuit Board Layout

q Block mode Device Drivers

q M-BOX Device Driver/Air Trombone

q M-BOX Ehancements: .WAV (Sound Bite) and .MIDI Modes

q (Real Time) Java on the Cerf Board

q 8051 – I2C network “stack” and application (Chat?)

q Other Ideas are welcome

CSE 466 – Fall 2000 - Introduction - 2

The Reentrant Sonar Driver



2

CSE 466 – Fall 2000 - Introduction - 3

Partitioning � A Case Study

q User Process – no control over when it executes. Can’t access system
resourced directly.

q Device Driver – Provides file I/O interface to system resources (I/O, RAM,
etc.)

q Interrupt System – Provides real-time response

q Robot Collision Avoidance System
Sensors
§ Electronic Compass and Sonar Range Finder

Low Priority (Highest level) of Processing
• Knowing where it is and deciding how to get where its going

Time Critical Processing
• Sonar Travel Time

High Priority Processing
• Avoid Crashing into things

Partition into Linux user process, device driver, interrupt system

CSE 466 – Fall 2000 - Introduction - 4

User Process

main () {

while (1) {
read (sonar, distance, n);
read (compass, direction, n);
here = where(here, distance, direction, speed, angle);
move(here, there, &speed, &angle);

}

}

q What do the device drivers do?
Should it be different than what we discussed so far?
Compass – Read proper memory mapped location to get current
compass output and return result.

q Where do we do collision detection and avoidance??
The essence of a “soft” real time constraint.
We don’t want to disable other time critical operations (ISR)
We can’t let it run at the user level



3

CSE 466 – Fall 2000 - Introduction - 5

Answer: In the ISR�sort of

q Linux Nomenclature for Interrupt handling
Top Half – the actual ISR. Time critical stuff
Bottom Half – the time dependent, less critical stuff. Signaled by the ISR

User App
High Level non-time
Critical Processing

Top Half:
Capture Time

Bottom Half:
Compute distance/Avoid Col.

initiate next measure

int

Return Measurement
Info

task queue

user
space

kernel
space

system
call

in this case,
sonar_init() might
start the measurement
process!

read()

CSE 466 – Fall 2000 - Introduction - 6

Schedule of task queues�bottom halves in Linux

blah()
blah()
blah()

TOP
HALF

interrupt

BOT.
HALF

blah()
blah()
blah()

rti

OS:
Do Tick or
System Call

sys call
or tick

EXECUTE
TASK
QUEU

blah()
read()
blah()

add to task queue, and mark execution

Device
Driver

no critical section here
BOT HALF and Device Driver
are mutually exclusive. Not true for Top
Half, so this is a good way to share data
between driver and ISR

read()

myapp

other
app

arrows represent passage of
control not data



4

CSE 466 – Fall 2000 - Introduction - 7

Robot Control

main () {

sonar = open(“/dev/sonar”, R_ONLY);

while (1) {
read (sonar, distance, n);
read (compass, direction, n);
here = where(here, distance,

direction, speed, angle);
move(here, there, &speed, &angle);

}

}

Top Half:
Assert

Init (periodic)

Bottom Half:
update queue()
collision_avoidance()
wake_on(wait_queue)

if q not empty, return data
else sleep_on(wait_queue);

task queue

user
space

system
call

in this case,
sonar_init() might
start the measurement
process!

sonar_read()

blocks on empty queue

overwrite stale data
need time-stamp

Top Half:
capture time echo

sonar_init()

CSE 466 – Fall 2000 - Introduction - 8

As a Task Diagram

process 2
process 1

myapp
OS/other
OS/driver
ISR BOT
ISR TOP

myapp:
read()

myapp:
blocked by driver on
empty queue

ISR BOT and Driver are mutually exclusive, so no problem with
shared data structures.
Bottom half has manay opportunities to run
Worst case is the tick interval of the operating system. Can be changed in the Linux Kernel

bottom half is queued

Tick

bottom half is queued

myapp
resumes

two measurments
in the queue



5

CSE 466 – Fall 2000 - Introduction - 9

Linux Interprocess Communication

Pipes and Fork()
void main() {

int pfds[2];
pipe(pfds);
if (fork()) producer();
else consumer();

}
void producer() { // serial?

int q = pfds[0];
while (1) {generate_data(buf); write(q, buf, n);}

}
void consumer() {

int q = pfds[1];
while (1) {read(q, buf, n); process_data(buf);}

}
Single Reader, Single Writer
Kernel ensures mutual exclusion (Read/Write are system calls)

CSE 466 – Fall 2000 - Introduction - 10

FIFO�s, which are named pipes

q Process 1
void main() {

mknod(“/tmp/myfifo”, S_IFIFO, ); // create a FIFO file node
f = open(“/tmp/myfifo”, O_WRONLY);
while (1) {generate_data(buf); write(q, buf, n);}

}

q Process 2
void main() {

f = open(“/tmp/myfifo”, O_RDONLY);
while (1) {read(q, buf, n); process_data(buf);}

}

q Works for “unrelated” processes

q Multiple writers, Multiple readers
Kernel ensures mutual exclusion
Kernel does not control interleaving of writers, readers



6

CSE 466 – Fall 2000 - Introduction - 11

Impement a FIFO w/ a Device Driver

CSE 466 – Fall 2000 - Introduction - 12

Shared Memory

q Can we do this with a device driver?

q There are dedicated systems calls to support shared memory which are
more efficient than device drivers



7

CSE 466 – Fall 2000 - Introduction - 13

Message Queues

q Like FIFO’s but for data structures rather than bytes (Structured I/O)

System calls
Create a message queue
Put messages on the message queue(q, message_pointer,
message_type)
Get messages from the queue(q, message_pointer, message_type);

q It’s a really ugly in C
The data structure is serialized, but you can’t tell what the type is.
Sender and Receiver have to agree on integer designations for data
types)
Java (and maybe C++) is sooo much better at this kind of thing

CSE 466 – Fall 2000 - Introduction - 14

Implement w/ Shared Memory

q FIFO

q Shared Memory



8

CSE 466 – Fall 2000 - Introduction - 15

Sockets -- Networking

q s = socket(int domain, int type, int protocol) -- protocol is usually associated
with domain but not always

domain: internet, UNIX, apple-talk…etc. How to interpret that address

q bind(int s, sockaddr *addr, n)
s is the socket identifier
sockaddr is the address (june.cs.washington.edu)
n is the length of the address

q Now it is like a pipe, you can do read/write, send/recv, listen/accept.

q Several types
stream
datagram
sequential
raw

q The protocol stack
mapping from application level abstractions (open, read, socket) to HW
and back


