Real Time Operating Systems

What is the basic thing we want the OS to do to help us improve worst case
latency?

How?

Simplest Scheduling algorithm

Some properties of such system:

Other niceties:

CSE466 Autumn ‘00- 1



Features of an Embedded Operating System

Interrupt latency

System call overhead (Various functions...task switch, signal, create, delete)
Memory overhead

Tasks (threads)

Scheduling Algorithms

Communication and synchronization primitives (tools)

Memory Management

CSE466 Autumn ‘00- 2



Comparative Real Time OSes

Maximum Mumber of Tasks
Maximum Active Tasks

CODE 5Space Reqguired

DATA Space Required

Stack (IDATAY Space Required

XDATA 5Space Required

Timer Used

System Clock Divisor

Interrupt Latency

Context Switch Time (Fast Task)
idepends on stack |oad)

Context Switch Time (Standard Task)
idepends on stack |oad!

Tazk Priority Lewels
Semaphores
Mailboxes

Mailbaox Size

Memory Pools

RTA51 Full
206

19
G-8 Kbytes
40-46 Bytes
20-200 Bytes
EEQ Eytes
mikimum
0,1, ar 2

1, 000-40, 000
cycles

< B0 cycles
T0-100 cycles

180-700 cycles

4
g8 maximum
g8 maximum
g8 entries

16 maximum

CSE466 Autumn "00- 3

RTA51 Tiny

. Compareto
” uClinux at
000 gyres " ~A00K bytes.
T Bytes
T~ what
3 Bytes for
each tazk f()rQ)
0
1, 000-65, B35
cycles
<eveles \What ISthis?

100-700 cycles 38us— 280us
why the variable?

- actually 16
- semaphores



Stack Management

RAMTOP RAMTOP RAMTOP
OFFH OFFH OFFH
Stack Area Stack Area
for Task 2 for Task 2
0OF8H 0OF8H
Stack Area
Stack Area
for Task 1 for Task 2
OFOH
Stack Area
for Task 1
B0OH
Stack Area Stack Area
for Task 0 for Task 1
58H 58H
Stack Area Stack Area
for Task 0 for Task O
?2STACK ortas PSTACK ortas ?2STACK
(50H) (50H) |{5UH}

Stack Assignment for
Task0 = Running Task

Stack Assignment for
Task1 = Running Task

Stack Assignment for
Task2 = Running Task

CSE466 Autumn ‘00- 4



Multitasking - state maintained for each task

timedice
onl Runnin
oneytask 2 timedice Runnable
INn this state
at atime
walit()
. delete()
signal() or eate()
Blocked de'eteg \ Deleted

system calls

CSE466 Autumn ‘00- 5



~ Programmers View of Tiny OS o

void tone_isr(void) interrupt ... { Advantages
sDeterministic response time
even w/ non deterministic

. tasks lengths.
void serial_isr(void) interrupt ...{ ° | ncremental devel Opment
timeCiritical();
os_send_signal(SERIAL);
}
void play(void) _task_MUSIC { Resources:
0s_create(SERIAL); .
while (1) {os_wait();
process_next_event();}
}

void serial(void) _task SERIAL {
while (1) {os_wait();
process_serial_data();} // os_create(MUSIC)?

\ Tasks are threads

CSE466 Autumn ‘00- 6

}



Task Diagram
.—.

ostime ostime ostime ostime
dice | gctime Sice slice sice musictime
dice...signal dice
serial isr music task !
A
musIC 1Ssr
serial
music
OS
A/ >
wrial i / deadline
signal_s Char arrives Mus irt]aSk IS n(e)vSer
_ more than one
serial task

time slice away

CSE466 Autumn ‘00- 7



Interrupt Priorities

Key question: Is there a bad time to get a tone gen interrupt?

tone isr

Task?2

Taskl

QS

+t—>

context switch: 100-700 cycles

CSE466 Autumn ‘00- 8



Another Solution

Multiprocessor: Dedicate one processor to each (or a few) tasks.
Still need synchronization and communication.

An M-BOX network could be an example of a multiprocessor system.
A synthesizer w/ mutltiple notes and “voices”

CSE466 Autumn ‘00- 9



Process v. Thread

Process:

Each process runs in a separate address space. Address Ox1 in process
one is not the same memory location as address 0x1 in another process.

Context switching is expensive:
need to reload memory management variables
may need to invalidate cache or do other cache coherency tricks
Anything address based needs to be saved and restored

Threads: lightweight
All threads run in the same address space
Still have same basic state machine (ready, running, blocked, killed)
Still need context switching for registers, stack.

CSE466 Autumn ‘00- 10



Reentrant functions...sharing code not data

Are there shared functions that we would like to have?
deq?
enq?
next (same for head or tail)?
Q declaration and initialization?

Can task switching clobber local variables (parameters and automatics)?
What happens when this function is interrupted by the OS?
unsigned char next(unsigned char current, unsigned char size) {
if (current+1 == size) return 0;

else return (current+1); It dependson wherethe

} parameter s, automatics, and
pill registersare stored... this
3 placesfor parameters oneis probably okay!
a. Registers

b. fixed locations
c. stack...but not the hardwar e stack!

CSE466 Autumn ‘00- 11



How about these?

Is this reentrant?
void disable(void) { ETO = 0;}
test for reentrancy: no matter how instructions from separate threads are

interleaved, the outcome for all threads will be the same as if there were
no other thread.

Is this reentrant? ... note: we don’t care about order
void setPriority(bit sHi) {PS = sHi; PT = ~sHi;}

Thread 1 (sHi =0) | Thread 2 (sHi = 1)
PS O

PS 1

PT O
PT<-1

When do we need reentrancy in non-multithreaded programming?
How is this normally managed?

CSE466 Autumn ‘00- 12



Examples of Reentrant functions

int sum(tree) {
If (!tree) return O;
return sum(tree->left) + sum(tree->right) + tree->val;

}
reason for reentrancy: re-use code

The key to reentrancy: relative addressing

Other examples of reentrancy:
two tasks share afunction, ISR and task share afunction

CSE466 Autumn ‘00- 13



Reentrancy in Keil C51

In C51, most parameter passing is done through registers (up to three parameters).
Then fixed memory locations are used. Register method is reentrant, the other isn't.

Local (automatic) variables in functions are also mapped to fixed memory locations (w/
overlaying)...definitely not reentrant.

How can we solve this: declare functions to be reentrant as in:
unsigned char next(unsigned char current, unsigned char size) reentrant {
if (current+1 == size) return O;
else return (current+1);

}

BUT...the stack used for reentrant functions is NOT the same as the hardware stack used for
return address, and ISR/TASK context switching. There is a separate “reentrant” stack used for
that, which is not protected by the TINY OS. It's a different region of memory, and a fixed memory
location is used for the reentrant stack pointer. So this works for FULL and for recursion (no OS).

Conclusion...you can have shared functions in TINY if you:

convince yourself that all parameters are passed through registers

convince yourself are no local variables that use fixed memory locations (compiler can

allocate those to registers too)

be sure not not change HW settings non-atomically

or... you disable context switching in shared functions by disabling TO interrupts
Think of shared functions as critical sections. Does this impact timing constraints or
interrupt latency?

CSE466 Autumn ‘00- 14



Implementation Example: Reentrant, Encapsulated Queue

fifo Q;
unsigned char array[QSIZE];
void producer(void) task 0{
typedef St;;:;t qset(;u%t { head: unsigned char i;
'ghed char-head, bit fail;
unsigned char tail; initq(& Q, array, QSIZE);
unsigned char *array; Osmcrealte_ta%(l):
; . e
| unsigned char size, while (1) { do{ dissble)
} fifo; fail = enq(&Q,i);
enable();
- - } while (fail);
Shared functlon_s are okz_iy If we el
disallow task switch during calls. }
why? re-entrant stack not void consumer (\;O?ld) task_1{
. It Tal;
prOtECted by Tiny OS. unsigned char i;
But shared C libraries are okay. while (1) {
t0);
Why? not sure yet. st
fail = deq(&Q,&i);
isthis okay for timing if T else usel).
wedon’t useit in Tone }
Gen ISR (over head)? J

CSE466 Autumn ‘00- 15



Priority: Preemptive vs. Non preemptive

signal T2

'SR < Sig?il T1, preempt T2 (time slice not up)
T2/o T2 Completes

T1/hi

0OS..

Pre-emptive: All tasks have a different priority...
hi priority task can preempt low priority task. Highest
priority task alwaysrunsto completion (wait).
Advantage: Lower latency, faster response for high
priority tasks.
Disadvantage: Potential to starve alow priority task
Tiny: no priority, round robin only. No starvation.
Priority Inversion: when T2 disablesinterrupts

CSE466 Autumn ‘00- 16




Coming Up
e e ———————

A little more on OS
Real Time Scheduling Algorithms
Synchronization: Semaphores and Deadlock avoidance
Interprocess Communication
Concept of shared resources: Devices and Drivers

Future
Linux and the Cerfboards
Networking
Product Safety
Java/Object Oriented Programming for Embedded Systems

Design Meeting (Product Ideas...)

CSE466 Autumn ‘00- 17



