Music Format

If amp =0, noteisacommand
switch(note)
O: turn off specified channel

1. continue for specified tne w/ no change
else

set specified channel to specified
note at specified amplitude (1-3)

CSE466 Autumn ‘00- 1



Data Rate

Serial Task
enqueu() Tone Task

Hos — |doprotocol w out =1(...)

| global Slice--;
% queue variables

Event Task tone

I_

dequeue() H
decodg() 1
1

~

v v v v

Worst Case Data Rate: 4 simultaneous packets/event = 8 bytes/event
at 200events/sec * 8bytes/event = 1600bytes/sec = 12.8Kbps
canwerun at 19.27?

CSE466 Autumn ‘00- 2



Serial Communication: RS-232 (IEEE Standard)

- Serial protocol for point-to-point low-cost, low speed
applications

» Commonly used to connect PCs to I/O devices

n RS-232 wires

TxD -- transmit data RXD _ recelve data
TxC -- transmit clock _
RTS — request to send RxC — receive clock

CTS —clear to send

DSR - data set ready :
DTR - data terminal ready

SG -- Signal Ground

CSE477 —Autumn 99

CSE466 Autumn ‘00- 3



Transfer modes

Synchronous
Clock signal wire is used by both receiver and sender to sample data

(Psuedo) Asynchronous
No clock signal in common
Data must be over sampled to “synchronize”
Needs only three wires (one data for each direction, and ground)

Flow control

Handshaking signals to control byte rate, not bit rate. Signals like RTS, CTS,
DSR, DTR

optional

CSE477 —Autumn 99

CSE466 Autumn ‘00- 4



Data Format

gy — e

Start Bit, Stop bit , Data bits, Parity Bit (odd, even, none)

Logic 'l

Logic "0

Logic 0 (space): between +3 and +25 Volts.
Logic 1 (mark): between -3 and -25 Volts.
Undefined between +3 and -3 volts.

CSE466 —Spring 00

CSE466 Autumn ‘00- 5



Level Converter: DS 275

Pin Description
RXout
Vdrv
TXin
GND
TXout
RXin
Vce

| voltage
- RS- 232 Receiver Output (-0.3V to Vcc) -
- Transmit driver +V (hook to Vcc) CONverson
- RS-232 Driver Output (-0.3V to Vcc)
- System ground
- RS-232 Driver Output (+/- 15 V)
- RS-232 Receive Input (+/- 15V)
- System Logic Supply (+5V)
RX Rx,,
DS
8051 TXTx 275

RX

n

X

out

CSE466 Autumn ‘00- 6

CSE477 —Autumn 99



NULL Modem Adapter §
—
DTE

Null
modem

D9 D9 DTE
3 TD B b
2 ED TD 3
5 a0 a0 5
4 DTER DTR 4
é D3R a EDSR é
; - o0 ! This adapter
4 G B ! does the
% CTS S 8 :
swapping
Using only TD, RD, and SG for you.

No need for flow control (May miss characters if sent t
Both ends ready to send/receive at any time

DTE
DTE /1 Modem = modem J\ ring 00

DCE

CSE466 Autumn ‘00- 7



SW Flow Control Protocol
ack

<

Serial Task
enqueu() Tone Task

Hos — |doprotocol w out =1(...)

| global Slice--;
% queue variables

daia Event Task tone

I_

dequeue() I
decode() 1
1

~—

v v v v

l

Worst Case Data Rate: 4 simultaneous packets/event = 8 bytes/event
at 200events/sec * 8bytes/event = 1600bytes/sec = 12.8Kbps
What determines our true bit rate for keeping the buffer full?

CSE466 Autumn ‘00- 8



Review Questions?

CSE466 Autumn ‘00- 9



Comparison Non OS Architectures

See Chapter 5, table 5.1 Simon

CSE466 Autumn ‘00- 10



Real Time Operating Systems

What is the basic thing we want the OS to do to help us improve worst case
latency?

How?

Simplest Scheduling algorithm

Some properties of such system:

Other niceties:

CSE466 Autumn ‘00- 11



~ Programmers View o

void tone_isr(void) interrupt ... { Advantages
sDeterministic response time
even w/ non deterministic

. tasks lengths.
void serial_isr(void) interrupt ...{ ° | ncremental devel Opment
timeCiritical();
os_send_signal(SERIAL);
}
void play(void) _task_MUSIC { Resources:
0s_create(SERIAL); .
while (1) {os_wait();
process_next_event();}
}

void serial(void) _task SERIAL {
while (1) {os_wait();
process_serial_data();} // os_create(MUSIC)?

\ Tasks are threads

CSE466 Autumn ‘00- 12

}



Another Solution

Multiprocessor: Dedicate one processor to each (or a few) tasks.
Still need synchronization and communication.

A network of M-BOXes could be an example of a multiprocessor
system

CSE466 Autumn ‘00- 13



Basic Architecture of an RT OS

Task Table
Process state, signal flag, time_out counter, context

System Interrupt Service Routine (timer)
System Calls (Code, time)

CSE466 Autumn ‘00- 14



Embedded Software

Software States v. Finite State Machines
Hierarchical State

Thread/Process Communication
Critical Sections
Synchronization
Messaging and Signaling

CSE466 Autumn ‘00- 15



