
CSE	461	University	of	Washington	 1	

Where	we	are	in	the	Course	
•  Star9ng	the	Transport	Layer!	

–  Builds	on	the	network	layer	to	deliver	
data	across	networks	for	applica9ons	
with	the	desired	reliability	or	quality	

Physical	
Link	

Network	
Transport	
Applica9on	

CSE	461	University	of	Washington	 2	

Recall	(2)	
•  Segments	carry	applica9on	data	
across	the	network	

•  Segments	are	carried	within	
packets	within	frames	

802.11	 IP	 TCP	 App,	e.g.,	HTTP	

Segment	

Packet	
Frame	

CSE	461	University	of	Washington	 3	

Transport	Layer	Services	
•  Provide	different	kinds	of	data	
delivery	across	the	network	to	
applica9ons	

Unreliable	 Reliable	
Messages	 Datagrams	(UDP)	
Bytestream	 Streams	(TCP)	

Comparison	of	Internet	Transports	
•  TCP	is	full-featured,	UDP	is	a	glorified	packet	

CSE	461	University	of	Washington	 4	

TCP	(Streams)	 UDP	(Datagrams)	
Connec9ons	 Datagrams	

Bytes	are	delivered	once,	
reliably,	and	in	order	

Messages	may	be	lost,	
reordered,	duplicated	

Arbitrary	length	content	 Limited	message	size	
Flow	control	matches	
sender	to	receiver	

Can	send	regardless	
of	receiver	state	

Conges9on	control	matches	
sender	to	network	

Can	send	regardless	
	of	network	state	

CSE	461	University	of	Washington	 5	

Socket	API	
•  Sockets	let	apps	a\ach	to	the	

local	network	at	different	ports	

Socket,	
Port	#1	

Socket,	
Port	#2	

Socket	API	(3)	
•  Same	API	used	for	Streams	and	Datagrams	

CSE	461	University	of	Washington	 6	

Primi9ve	 Meaning	
SOCKET	 Create	a	new	communica9on	endpoint	
BIND	 Associate	a	local	address	(port)	with	a	socket	
LISTEN	 Announce	willingness	to	accept	connec9ons	
ACCEPT	 Passively	establish	an	incoming	connec9on	
CONNECT	 Ac9vely	a\empt	to	establish	a	connec9on	
SEND(TO)	 Send	some	data	over	the	socket	
RECEIVE(FROM)	 Receive	some	data	over	the	socket	
CLOSE	 Release	the	socket	

Only	needed	
for	Streams	

To/From	
forms	for		
Datagrams	

CSE	461	University	of	Washington	 7	

Ports	
•  Applica9on	process	is	iden9fied	by	the	

tuple	IP	address,	protocol,	and	port	
–  Ports	are	16-bit	integers	represen9ng	local	

“mailboxes”	that	a	process	leases	

•  Servers	ofen	bind	to	“well-known	ports”	
–  <1024,	require	administra9ve	privileges	

•  Clients	ofen	assigned	“ephemeral”	ports	
–  Chosen	by	OS,	used	temporarily		

Some	Well-Known	Ports	

CSE	461	University	of	Washington	 8	

Port	 Protocol	 Use	
20,	21	 FTP	 File	transfer	

22	 SSH	 Remote	login,	replacement	for	Telnet	
25	 SMTP	 Email	
80	 HTTP	 World	Wide	Web	
110	 POP-3	 Remote	email	access	
143	 IMAP	 Remote	email	access	
443	 HTTPS	 Secure	Web	(HTTP	over	SSL/TLS)	
543	 RTSP	 Media	player	control	
631	 IPP	 Printer	sharing	

CSE	461	University	of	Washington	 9	

User	Datagram	Protocol	(UDP)	
•  Used	by	apps	that	don’t	want	
reliability	or	bytestreams	
–  Voice-over-IP	(unreliable)	
–  DNS,	RPC	(message-oriented)	
–  DHCP	(bootstrapping)	

(If	applica9on	wants	reliability	and	
messages	then	it	has	work	to	do!)	

CSE	461	University	of	Washington	 10	

UDP	Buffering	
App	

Port	Mux/Demux	

App	 App	Applica9on	

Transport	
(TCP)	

Network	(IP)	 packet	

Message	queues	

Ports	

CSE	461	University	of	Washington	 11	

UDP	Header	
•  Uses	ports	to	iden9fy	sending	and	
receiving	applica9on	processes	

•  Datagram	length	up	to	64K	
•  Checksum	(16	bits)	for	reliability	

CSE	461	University	of	Washington	 12	

Connec9on	Establishment	
•  Both	sender	and	receiver	must	be	ready	

before	we	start	the	transfer	of	data	
–  Need	to	agree	on	a	set	of	parameters	
–  e.g.,	the	Maximum	Segment	Size	(MSS)	

•  This	is	signaling	
–  It	sets	up	state	at	the	endpoints	
–  Like	“dialing”	for	a	telephone	call	

CSE	461	University	of	Washington	 13	

Three-Way	Handshake	
•  Used	in	TCP;	opens	connec9on	for	

data	in	both	direc9ons	

•  Each	side	probes	the	other	with	a	
fresh	Ini9al	Sequence	Number	(ISN)	
–  Sends	on	a	SYNchronize	segment	
–  Echo	on	an	ACKnowledge	segment	

•  Chosen	to	be	robust	even	against	
delayed	duplicates	

Ac9ve	party	
(client)	

Passive	party	
(server)	

CSE	461	University	of	Washington	 14	

Three-Way	Handshake	(2)	
•  Three	steps:	

–  Client	sends	SYN(x)	
–  Server	replies	with	SYN(y)ACK(x+1)	
–  Client	replies	with	ACK(y+1)	
–  SYNs	are	retransmi\ed	if	lost	

•  Sequence	and	ack	numbers	
carried	on	further	segments	

1	

2	

3	

Ac9ve	party	
(client)	

Passive	party	
(server)	

SYN	(SEQ=x)	

SYN	(SE
Q=y,	AC

K=x+1)
	

(SEQ=x+1,	ACK=y+1)	
Time	

CSE	461	University	of	Washington	 15	

Connec9on	Release	
•  Orderly	release	by	both	par9es	when	

done	
–  Delivers	all	pending	data	and	“hangs	up”	
–  Cleans	up	state	in	sender	and	receiver	

•  Key	problem	is	to	provide	reliability	
while	releasing	
–  TCP	uses	a	“symmetric”	close	in	which	
both	sides	shutdown	independently	

CSE	461	University	of	Washington	 16	

TCP	Connec9on	Release	
•  Two	steps:	

–  Ac9ve	sends	FIN(x),	passive	ACKs	
–  Passive	sends	FIN(y),	ac9ve	ACKs	
–  FINs	are	retransmi\ed	if	lost	

•  Each	FIN/ACK	closes	one	
direc9on	of	data	transfer	

Ac9ve	party	 Passive	party	

CSE	461	University	of	Washington	 17	

TCP	Connec9on	Release	(2)	
•  Two	steps:	

–  Ac9ve	sends	FIN(x),	passive	ACKs	
–  Passive	sends	FIN(y),	ac9ve	ACKs	
–  FINs	are	retransmi\ed	if	lost	

	

•  Each	FIN/ACK	closes	one	
direc9on	of	data	transfer	

Ac9ve	party	 Passive	party	

1	

2	

FIN	(SEQ=x)	

(SEQ=y,	
ACK=x+1

)	

(SEQ=x+1,	ACK=y+1)	

FIN	(SEQ
=y,	ACK=

x+1)	

CSE	461	University	of	Washington	 18	

TIME_WAIT	State	
•  We	wait	a	long	9me	(two	9mes	the	

maximum	segment	life9me	of	60	
seconds)	afer	sending	all	segments		
and	before	comple9ng	the	close	

•  Why?	
–  ACK	might	have	been	lost,	in	which	case	
FIN	will	be	resent	for	an	orderly	close	

–  Could	otherwise	interfere	with	a	
subsequent	connec9on	

	

CSE	461	University	of	Washington	 19	

Sliding	Window	
•  The	sliding	window	algorithm	

–  Pipelining	and	reliability	
–  Building	on	Stop-and-Wait		

Yeah!	

Network	

CSE	461	University	of	Washington	 20	

Recall	
•  ARQ	with	one	message	at	a	9me	is	
Stop-and-Wait	(normal	case	below)	

Frame	0	

ACK	0	Timeout	 Time	

Sender	 Receiver	

Frame	1	

ACK	1	

CSE	461	University	of	Washington	 21	

Limita9on	of	Stop-and-Wait	
•  It	allows	only	a	single	message	to	
be	outstanding	from	the	sender:	
–  Fine	for	LAN	(only	one	frame	fit)	
–  Not	efficient	for	network	paths	with	
BD	>>	1	packet	

CSE	461	University	of	Washington	 22	

Sliding	Window	
•  Generaliza9on	of	stop-and-wait	

– Allows	W	packets	to	be	
outstanding	

–  Can	send	W	packets	per	RTT	(=2D)	

–  Pipelining	improves	performance		
– Need	W=2BD	to	fill	network	path	

CSE	461	University	of	Washington	 23	

Sliding	Window	Protocol	
•  Many	varia9ons,	depending	on							

how	buffers,	acknowledgements,				
and	retransmissions	are	handled	

•  Go-Back-N	»	
–  Simplest	version,	can	be	inefficient	

•  Selec9ve	Repeat	»	
–  More	complex,	be\er	performance	
		
	

CSE	461	University	of	Washington	 24	

Sliding	Window	–	Sender		
•  Sender	buffers	up	to	W	segments								
un9l	they	are	acknowledged	
–  LFS=LAST	FRAME	SENT,	LAR=LAST	ACK	REC’D	
–  Sends	while	LFS	–	LAR	≤	W		

..	 5	 6	 7	 ..	 2	 3	 4	 5	 2	 3	 ..	

LAR	 LFS	

W=5	

Acked	 Unacked	 3	 ..	Unavailable	

Available	

seq.	number	

Sliding	
Window	

CSE	461	University	of	Washington	 25	

Sliding	Window	–	Sender	(2)		
•  Transport	accepts	another	segment	
of	data	from	the	Applica9on	...	
–  Transport	sends	it	(as	LFS–LAR	à	5)	

..	 5	 6	 7	 ..	 2	 3	 4	 5	 2	 3	 ..	

LAR	 LFS	

W=5	

Acked	 Unacked	 3	 ..	Unavailable	

seq.	number	

4	

CSE	461	University	of	Washington	 26	

Sliding	Window	–	Sender	(3)		
•  Next	higher	ACK	arrives	from	peer…	

– Window	advances,	buffer	is	freed		
–  LFS–LAR	à	4	(can	send	one	more)		

..	 5	 6	 7	 2	 3	 4	 5	 2	 3	 ..	

LAR	 LFS	

W=5	

Acked	 3	 ..	Unavail.	

Available	

seq.	number	

..	2	 Unacked	

CSE	461	University	of	Washington	 27	

Sliding	Window	–	Go-Back-N	
•  Receiver	keeps	only	a	single	packet	
buffer	for	the		next	segment	
–  State	variable,	LAS	=	LAST	ACK	SENT	

•  On	receive:	
–  If	seq.	number	is	LAS+1,	accept	and	
pass	it	to	app,	update	LAS,	send	ACK	

–  Otherwise	discard	(as	out	of	order)	

CSE	461	University	of	Washington	 28	

Sliding	Window	–	Selec9ve	Repeat	
•  Receiver	passes	data	to	app	in	order,			

and	buffers	out-of-order	segments	to	
reduce	retransmissions	

•  ACK	conveys	highest	in-order	segment,	
plus	hints	about	out-of-order	segments	

•  TCP	uses	a	selec9ve	repeat	design;					
we’ll	see	the	details	later	

CSE	461	University	of	Washington	 29	

Sliding	Window	–	Selec9ve	Repeat	(2)	

•  Buffers	W	segments,	keeps	state	
variable,	LAS	=	LAST	ACK	SENT	

•  On	receive:	
–  Buffer	segments	[LAS+1,	LAS+W]		
–  Pass	up	to	app	in-order	segments	
from	LAS+1,	and	update	LAS	

–  Send	ACK	for	LAS	regardless	

CSE	461	University	of	Washington	 30	

Sliding	Window	–	Retransmissions	
•  Go-Back-N	sender	uses	a	single	9mer					

to	detect	losses	
–  On	9meout,	resends	buffered	packets		

star9ng	at	LAR+1	

•  Selec9ve	Repeat	sender	uses	a	9mer				
per	unacked	segment	to	detect	losses	
–  On	9meout	for	segment,	resend	it	
–  Hope	to	resend	fewer	segments	

CSE	461	University	of	Washington	 31	

Sequence	Numbers	
•  Need	more	than	0/1	for	Stop-and-Wait	…	

–  But	how	many?	

•  For	Selec9ve	Repeat,	need	W	numbers	for	
packets,	plus	W	for	acks	of	earlier	packets	
–  2W	seq.	numbers	
–  Fewer	for	Go-Back-N	(W+1)	

•  Typically	implement	seq.	number	with	an	N-
bit	counter	that	wraps	around	at	2N—1		
–  E.g.,	N=8:			…,	253,	254,	255,	0,	1,	2,	3,	…	

CSE	461	University	of	Washington	 32	

Sequence	Time	Plot	

Time	

Se
q.
	N
um

be
r	

Acks	
(at	Receiver)	

Delay	(=RTT/2)	

Transmissions	
(at	Sender)	

CSE	461	University	of	Washington	 33	

Sequence	Time	Plot	(2)	

Time	

Se
q.
	N
um

be
r	

Go-Back-N	scenario	

CSE	461	University	of	Washington	 34	

Sequence	Time	Plot	(3)	

Time	

Se
q.
	N
um

be
r	 Loss	

Timeout	

Retransmissions	

CSE	461	University	of	Washington	 35	

Flow	Control	
•  Adding	flow	control	to	the	sliding	
window	algorithm	
–  To	slow	the	over-enthusias9c	sender		

Please	slow	down!	

Network	

CSE	461	University	of	Washington	 36	

Problem	
•  Sliding	window	uses	pipelining	to	
keep	the	network	busy	
– What	if	the	receiver	is	overloaded?	

Streaming	video	
Big	Iron	 Wee	Mobile	

Arg	…	

CSE	461	University	of	Washington	 37	

Sliding	Window	–	Receiver		
•  Consider	receiver	with	W	buffers	

–  LAS=LAST	ACK	SENT,	app	pulls	in-order	
data	from	buffer	with	recv()	call		

..	 5	 6	 7	 5	 2	 3	 ..	

LAS	

W=5	

Finished	 3	 ..	Too	high	

seq.	number	

5	5	5	 5	Acceptable	

Sliding	
Window	

CSE	461	University	of	Washington	 38	

Sliding	Window	–	Receiver	(2)		
•  Suppose	the	next	two	segments	
arrive	but	app	does	not	call	recv()	

..	 5	 6	 7	 5	 2	 3	 ..	

LAS	

W=5	

Finished	 3	 ..	Too	high	

Acceptable	

seq.	number	

5	5	5	 5	

CSE	461	University	of	Washington	 39	

Sliding	Window	–	Receiver	(3)		
•  Suppose	the	next	two	segments	
arrive	but	app	does	not	call	recv()	
–  LAS	rises,	but	we	can’t	slide	window!	

..	 5	 6	 7	 5	 2	 3	 ..	

LAS	

W=5	

Finished	 3	 ..	Too	high	

Acceptable	

seq.	number	

5	5	5	 5	4	4	Acked	

CSE	461	University	of	Washington	 40	

Sliding	Window	–	Receiver	(4)		
•  If	further	segments	arrive	(even	in	
order)	we	can	fill	the	buffer		
– Must	drop	segments	un9l	app	recvs!	

..	 5	 6	 7	 5	 2	 3	 ..	

LAS	

W=5	

Finished	 3	 ..	Too	high	

Nothing	
Acceptable	

seq.	number	

5	5	5	 5	4	4	Acked	 4	4	 4	Acked	

CSE	461	University	of	Washington	 41	

Sliding	Window	–	Receiver	(5)		
•  App	recv()	takes	two	segments	

– Window	slides	(phew)	

..	 5	 6	 7	 5	 2	 3	 ..	

LAS	

W=5	

Finished	 3	 ..	Too	high	

Acceptable	

seq.	number	

5	5	5	 5	 4	4	 4	Acked	

CSE	461	University	of	Washington	 42	

Flow	Control	
•  Avoid	loss	at	receiver	by	telling	
sender	the	available	buffer	space	
–  WIN=#Acceptable,	not	W	(from	LAS)	

..	 5	 6	 7	 5	 2	 3	 ..	

LAS	

W=5	

Finished	 3	 ..	Too	high	

Acceptable	

seq.	number	

5	5	5	 5	4	4	Acked	

CSE	461	University	of	Washington	 43	

Flow	Control	(2)	
•  Sender	uses	the	lower	of	the	sliding	
window	and	flow	control	window	
(WIN)	as	the	effec9ve	window	size	

..	 5	 6	 7	 5	 2	 3	 ..	

LAS	

WIN=3	

Finished	 3	 ..	Too	high	

seq.	number	

5	5	5	 5	4	4	Acked	

CSE	461	University	of	Washington	 44	

Flow	Control	(3)	
•  TCP-style	example	

–  SEQ/ACK	sliding	window	
– Flow	control	with	WIN	
–  SEQ	+	length	<	ACK+WIN		
– 4KB	buffer	at	receiver	
– Circular	buffer	of	bytes	

CSE	461	University	of	Washington	 45	

Topic	
•  How	to	set	the	9meout	for			
sending	a	retransmission	
–  Adap9ng	to	the	network	path	

Lost?	

Network	

CSE	461	University	of	Washington	 46	

Retransmissions	
•  With	sliding	window,	the	strategy	
for	detec9ng	loss	is	the	9meout	
–  Set	9mer	when	a	segment	is	sent	
–  Cancel	9mer	when	ack	is	received	
–  If	9mer	fires,	retransmit	data	as	lost	

Retransmit!	

CSE	461	University	of	Washington	 47	

Timeout	Problem	
•  Timeout	should	be	“just	right”	

–  Too	long	wastes	network	capacity	
–  Too	short	leads	to	spurious	resends	
–  But	what	is	“just	right”?	

•  Easy	to	set	on	a	LAN	(Link)	
–  Short,	fixed,	predictable	RTT	

•  Hard	on	the	Internet	(Transport)	
–  Wide	range,	variable	RTT	

Example	of	RTTs	

CSE	461	University	of	Washington	 48	

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

0	 20	 40	 60	 80	 100	 120	 140	 160	 180	 200	Seconds	

Ro
un

d	
Tr
ip
	T
im

e	
(m

s)
	

BCNàSEAàBCN	

Example	of	RTTs	(2)	

CSE	461	University	of	Washington	 49	

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

0	 20	 40	 60	 80	 100	 120	 140	 160	 180	 200	Seconds	

Ro
un

d	
Tr
ip
	T
im

e	
(m

s)
	 Varia9on	due	to	queuing	at	routers,	

changes	in	network	paths,	etc.	

BCNàSEAàBCN	

Propaga9on	(+transmission)	delay	≈	2D	

Example	of	RTTs	(3)	

CSE	461	University	of	Washington	 50	

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

0	 20	 40	 60	 80	 100	 120	 140	 160	 180	 200	Seconds	

Ro
un

d	
Tr
ip
	T
im

e	
(m

s)
	 Timer	too	high!	

Timer	too	low!	

Need	to	adapt	to	the	
network	condi9ons	

CSE	461	University	of	Washington	 51	

Adap9ve	Timeout	
•  Keep	smoothed	es9mates	of	the	RTT	(1)	

and	variance	in	RTT	(2)	
–  Update	es9mates	with	a	moving	average	
1.  SRTTN+1	=	0.9*SRTTN	+	0.1*RTTN+1	
2.  SvarN+1	=	0.9*SvarN	+	0.1*|RTTN+1–	SRTTN+1|	

•  Set	9meout	to	a	mul9ple	of	es9mates	
–  To	es9mate	the	upper	RTT	in	prac9ce	
–  TCP	TimeoutN	=	SRTTN	+	4*SvarN	

Example	of	Adap9ve	Timeout	

CSE	461	University	of	Washington	 52	

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

0	 20	 40	 60	 80	 100	 120	 140	 160	 180	 200	Seconds	

RT
T	
(m

s)
	

SRTT	

Svar	

Example	of	Adap9ve	Timeout	(2)	

CSE	461	University	of	Washington	 53	

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

0	 20	 40	 60	 80	 100	 120	 140	 160	 180	 200	Seconds	

RT
T	
(m

s)
	

Timeout	(SRTT	+	4*Svar)	

Early	
9meout	

CSE	461	University	of	Washington	 54	

Adap9ve	Timeout	(2)	
•  Simple	to	compute,	does	a	good		
job	of	tracking	actual	RTT	
–  Li\le	“headroom”	to	lower	
–  Yet	very	few	early	9meouts	

•  Turns	out	to	be	important	for	good	
performance	and	robustness	

CSE	461	University	of	Washington	 55	

Topic	
•  How	TCP	works!	

–  The	transport	protocol	used	for					
most	content	on	the	Internet	

TCP	TCP	TCP	

We	love	TCP/IP!	

Network	

We	love	TCP/IP!	We	love	TCP/IP!	We	♥	TCP/IP!	

CSE	461	University	of	Washington	 56	

TCP	Features	
•  A	reliable	bytestream	service	»	
•  Based	on	connec9ons		
•  Sliding	window	for	reliability	»	

–  With	adap9ve	9meout	
•  Flow	control	for	slow	receivers	

•  Conges9on	control	to	allocate	
network	bandwidth	

This	
9me	

Next	
9me	

Reliable	Bytestream	
•  Message	boundaries	not	preserved	from	send()	to	recv()	

–  But	reliable	and	ordered	(receive	bytes	in	same	order	as	sent)		

CSE	461	University	of	Washington	 57	

Four	segments,	each	with	512	bytes	of	
data	and	carried	in	an	IP	packet	

2048	bytes	of	data	delivered	
to	app	in	a	single	recv()	call	

Sender	 Receiver	

CSE	461	University	of	Washington	 58	

Reliable	Bytestream	(2)	
•  Bidirec9onal	data	transfer	

–  Control	informa9on	(e.g.,	ACK)	
piggybacks	on	data	segments	in	
reverse	direc9on		

A	 B	
data	BàA	

ACK	AàB	

ACK	BàA	

data	AàB	

CSE	461	University	of	Washington	 59	

TCP	Header	(1)	
•  Ports	iden9fy	apps	(socket	API)	

–  16-bit	iden9fiers	

CSE	461	University	of	Washington	 60	

TCP	Header	(2)	
•  SEQ/ACK	used	for	sliding	window	

–  Selec9ve	Repeat,	with	byte	posi9ons	

CSE	461	University	of	Washington	 61	

TCP	Sliding	Window	–	Receiver		
•  Cumula9ve	ACK	tells	next	expected	
byte	sequence	number	(“LAS+1”)	

•  Op9onally,	selec9ve	ACKs	(SACK)	
give	hints	for	receiver	buffer	state	
–  List	up	to	3	ranges	of	received	bytes	

ACK	up	to	100	and	200-299		

CSE	461	University	of	Washington	 62	

TCP	Sliding	Window	–	Sender	
•  Uses	an	adap9ve	retransmission				

9meout	to	resend	data	from	LAS+1	
•  Uses	heuris9cs	to	infer	loss	quickly							

and	resend	to	avoid	9meouts	
–  “Three	duplicate	ACKs”	treated	as	loss		

ACK	100	
ACK	100,	
200-299	

ACK	100,	
200-399	

ACK	100,	
200-499	

Sender	decides	100-199	is	lost	

CSE	461	University	of	Washington	 63	

TCP	Header	(3)	
•  SYN/FIN/RST	flags	for	connec9ons	

–  Flag	indicates	segment	is	a	SYN	etc.	

CSE	461	University	of	Washington	 64	

TCP	Header	(4)	
•  Window	size	for	flow	control	

–  Rela9ve	to	ACK,	and	in	bytes	

CSE	461	University	of	Washington	 65	

Other	TCP	Details	
•  Many,	many	quirks	you	can							
learn	about		its	opera9on	
–  But	they	are	the	details	

•  Biggest	remaining	mystery	is	the	
workings	of	conges9on	control	
– We’ll	tackle	this	next	9me!	

CSE	461	University	of	Washington	 66	

Where	we	are	in	the	Course	
•  More	fun	in	the	Transport	Layer!	

–  The	mystery	of	conges9on	control	
–  Depends	on	the	Network	layer	too	

Physical	
Link	

Applica9on	

Network	
Transport	

CSE	461	University	of	Washington	 67	

Topic	
•  Understanding	conges9on,	a	
“traffic	jam”	in	the	network	
–  Later	we	will	learn	how	to	control	it	

What’s	the	hold	up?	

Network	

Nature	of	Conges9on	
•  Routers/switches	have	internal	buffering	for	conten9on	

CSE	461	University	of	Washington	 68	

.	.	.	

.	.	.	

.	

Input	Buffer	 Output	Buffer	Fabric	

Input	 Output	

Nature	of	Conges9on	(2)	
•  Simplified	view	of	per	port	output	queues	

–  Typically	FIFO	(First	In	First	Out),	discard	when	full	

CSE	461	University	of	Washington	 69	

Router	

=	

(FIFO)	Queue	
Queued	
Packets	

Router	

CSE	461	University	of	Washington	 70	

Nature	of	Conges9on	(3)	
•  Queues	help	by	absorbing	bursts	
when	input	>	output	rate	

•  But	if	input	>	output	rate	
persistently,	queue	will	overflow	
–  This	is	conges9on	

•  Conges9on	is	a	func9on	of	the	traffic	
pa\erns	–	can	occur	even	if	every	
link	have	the	same	capacity	

Effects	of	Conges9on	
•  What	happens	to	performance	as	we	increase	the	load?	

CSE	461	University	of	Washington	 71	

Effects	of	Conges9on	(2)	
•  What	happens	to	performance	as	we	increase	the	load?	

CSE	461	University	of	Washington	 72	

CSE	461	University	of	Washington	 73	

Effects	of	Conges9on	(3)	
•  As	offered	load	rises,	conges9on	occurs	

as	queues	begin	to	fill:	
–  Delay	and	loss	rise	sharply	with	more	load	
–  Throughput	falls	below	load	(due	to	loss)	
–  Goodput	may	fall	below	throughput	(due	
to	spurious	retransmissions)	

•  None	of	the	above	is	good!	
–  Want	to	operate	network	just											
before	the	onset	of	conges9on	

CSE	461	University	of	Washington	 74	

Bandwidth	Alloca9on	
•  Important	task	for	network	is	to	
allocate	its	capacity	to	senders	
–  Good	alloca9on	is	efficient	and	fair	

•  Efficient	means	most	capacity	is	
used	but	there	is	no	conges9on	

•  Fair	means	every	sender	gets	a	
reasonable	share	the	network	

CSE	461	University	of	Washington	 75	

Bandwidth	Alloca9on	(2)	
•  Key	observa9on:	

–  In	an	effec9ve	solu9on,	Transport	and	
Network	layers	must	work	together	

•  Network	layer	witnesses	conges9on	
–  Only	it	can	provide	direct	feedback	

•  Transport	layer	causes	conges9on	
–  Only	it	can	reduce	offered	load	

CSE	461	University	of	Washington	 76	

Bandwidth	Alloca9on	(3)	
•  Why	is	it	hard?	(Just	split	equally!)	

–  Number	of	senders	and	their	offered	
load		is	constantly	changing	

–  Senders	may	lack	capacity	in	different	
parts	of	the	network	

–  Network	is	distributed;	no	single	party	
has	an	overall	picture	of	its	state	

CSE	461	University	of	Washington	 77	

Bandwidth	Alloca9on	(4)	
•  Solu9on	context:	

–  Senders	adapt	concurrently	based	on	
their	own	view	of	the	network	

–  Design	this	adap9on	so	the	network	
usage	as	a	whole	is	efficient	and	fair	

–  Adap9on	is	con9nuous	since	offered	
loads	con9nue	to	change	over	9me	

CSE	461	University	of	Washington	 78	

Topic	
• What’s	a	“fair”	bandwidth	alloca9on?	

–  The	max-min	fair	alloca9on	

CSE	461	University	of	Washington	 79	

Recall	
•  We	want	a	good	bandwidth	
alloca9on	to	be	fair	and	efficient	
–  Now	we	learn	what	fair	means	

•  Caveat:	in	prac9ce,	efficiency	is	
more	important	than	fairness	

CSE	461	University	of	Washington	 80	

Efficiency	vs.	Fairness	
•  Cannot	always	have	both!	

–  Example	network	with	traffic									
AàB,	BàC	and	AàC		

–  How	much	traffic	can	we	carry?	

A	 B	 C	
1	 1	

CSE	461	University	of	Washington	 81	

Efficiency	vs.	Fairness	(2)	
•  If	we	care	about	fairness:	

–  Give	equal	bandwidth	to	each	flow	
–  AàB:	½	unit,	BàC:	½,	and	AàC,	½		
–  Total	traffic	carried	is	1	½	units	

A	 B	 C	
1	 1	

CSE	461	University	of	Washington	 82	

Efficiency	vs.	Fairness	(3)	
•  If	we	care	about	efficiency:	

– Maximize	total	traffic	in	network	
–  AàB:	1	unit,	BàC:	1,	and	AàC,	0		
–  Total	traffic	rises	to	2	units!	

A	 B	 C	
1	 1	

CSE	461	University	of	Washington	 83	

The	Slippery	No9on	of	Fairness	
•  Why	is	“equal	per	flow”	fair	anyway?	

–  AàC	uses	more	network	resources	
(two	links)	than	AàB	or	BàC	

–  Host	A	sends	two	flows,	B	sends	one	

•  Not	produc9ve	to	seek	exact	fairness	
– More	important	to	avoid	starva9on	
–  “Equal	per	flow”	is	good	enough	

CSE	461	University	of	Washington	 84	

Generalizing	“Equal	per	Flow”	
•  Bo\leneck	for	a	flow	of	traffic	is		
the	link	that	limits	its	bandwidth	
– Where	conges9on	occurs	for	the	flow	
–  For	AàC,	link	A–B	is	the	bo\leneck		

A	 B	 C	
1	 10	

Bo\leneck	

CSE	461	University	of	Washington	 85	

Generalizing	“Equal	per	Flow”	(2)	
•  Flows	may	have	different	
bo\lenecks	
–  For	AàC,	link	A–B	is	the	bo\leneck	
–  For	BàC,	link	B–C	is	the	bo\leneck	
–  Can	no	longer	divide	links	equally	…	A	 B	 C	

1	 10	

CSE	461	University	of	Washington	 86	

Max-Min	Fairness	
•  Intui9vely,	flows	bo\lenecked	on	a	
link	get	an	equal	share	of	that	link	

•  Max-min	fair	alloca9on	is	one	that:	
–  Increasing	the	rate	of	one	flow	will	
decrease	the	rate	of	a	smaller	flow	

–  This	“maximizes	the	minimum”	flow	

CSE	461	University	of	Washington	 87	

Max-Min	Fairness	(2)	
•  To	find	it	given	a	network,	imagine	
“pouring	water	into	the	network”	
1.  Start	with	all	flows	at	rate	0	
2.  Increase	the	flows	un9l	there	is	a	

new	bo\leneck	in	the	network	
3.  Hold	fixed	the	rate	of	the	flows	that	

are	bo\lenecked	
4.  Go	to	step	2	for	any	remaining	flows	

Max-Min	Example	
•  Example:	network	with	4	flows,	links	equal	bandwidth	

– What	is	the	max-min	fair	alloca9on?		

CSE	461	University	of	Washington	 88	

Max-Min	Example	(2)	
•  When	rate=1/3,	flows	B,	C,	and	D	bo\leneck	R4—R5		

–  Fix	B,	C,	and	D,	con9nue	to	increase	A		

CSE	461	University	of	Washington	 89	

Bo\leneck	

Max-Min	Example	(3)	
•  When	rate=2/3,	flow	A	bo\lenecks	R2—R3.	Done.		

CSE	461	University	of	Washington	 90	

Bo\leneck	

Bo\leneck	

Max-Min	Example	(4)	
•  End	with	A=2/3,	B,	C,	D=1/3,	and	R2—R3,	R4—R5	full		

–  Other	links	have	extra	capacity	that	can’t	be	used	
•  ,	linksxample:	network	with	4	flows,	links	equal	
bandwidth	
– What	is	the	max-min	fair	alloca9on?		

CSE	461	University	of	Washington	 91	

Adap9ng	over	Time	
•  Alloca9on	changes	as	flows	start	and	stop	

CSE	461	University	of	Washington	 92	

Time		

Adap9ng	over	Time	(2)	

CSE	461	University	of	Washington	 93	

Flow	1	slows	when	
Flow	2	starts	

Flow	1	speeds	up	
when	Flow	2	stops	

Time		

Flow	3	limit	
is	elsewhere	

CSE	461	University	of	Washington	 94	

Topic	
•  Bandwidth	alloca9on	models	

–  Addi9ve	Increase	Mul9plica9ve	
Decrease	(AIMD)	control	law	

AIMD!	

Sawtooth	

CSE	461	University	of	Washington	 95	

Recall	
•  Want	to	allocate	capacity	to	senders	

–  Network	layer	provides	feedback	
–  Transport	layer	adjusts	offered	load	
–  A	good	alloca9on	is	efficient	and	fair	

•  How	should	we	perform	the	alloca9on?	
–  Several	different	possibili9es	…	

CSE	461	University	of	Washington	 96	

Bandwidth	Alloca9on	Models	
•  Open	loop	versus	closed	loop	

–  Open:	reserve	bandwidth	before	use	
–  Closed:	use	feedback	to	adjust	rates	

•  Host	versus	Network	support	
– Who	is	sets/enforces	alloca9ons?	

•  Window	versus	Rate	based	
–  How	is	alloca9on	expressed?	

TCP	is	a	closed	loop,	host-driven,	and	window-based	

CSE	461	University	of	Washington	 97	

Bandwidth	Alloca9on	Models	(2)	
•  We’ll	look	at	closed-loop,	host-driven,	

and	window-based	too	

•  Network	layer	returns	feedback	on	
current	alloca9on	to	senders		
–  At	least	tells	if	there	is	conges9on	

•  Transport	layer	adjusts	sender’s	
behavior	via	window	in	response	
–  How	senders	adapt	is	a	control	law		

CSE	461	University	of	Washington	 98	

Addi9ve	Increase	Mul9plica9ve	
Decrease		

•  AIMD	is	a	control	law	hosts	can					
use	to	reach	a	good	alloca9on	
–  Hosts	addi9vely	increase	rate	while	
network	is	not	congested	

–  Hosts	mul9plica9vely	decrease							
rate	when	conges9on	occurs	

–  Used	by	TCP	J	

•  Let’s	explore	the	AIMD	game	…	

CSE	461	University	of	Washington	 99	

AIMD	Game	
•  Hosts	1	and	2	share	a	bo\leneck	

–  But	do	not	talk	to	each	other	directly	
•  Router	provides	binary	feedback	

–  Tells	hosts	if	network	is	congested	

Rest	of	
Network	

Bo\leneck	

Router	

Host	1	

Host	2	

1	

1	
1	

CSE	461	University	of	Washington	 100	

AIMD	Game	(2)	
•  Each	point	is	a	possible	alloca9on	

Host	1	

Host	2	0	 1	

1	

Fair	

Efficient	

Op9mal	
Alloca9on	

Congested	

CSE	461	University	of	Washington	 101	

AIMD	Game	(3)	
•  AI	and	MD	move	the	alloca9on		

Host	1	

Host	2	0	 1	

1	

Fair,	y=x	

Efficient,	x+y=1	

Op9mal	
Alloca9on	

Congested	

Mul9plica9ve	
Decrease	

Addi9ve	
Increase	

CSE	461	University	of	Washington	 102	

AIMD	Game	(4)	
•  Play	the	game!	

Host	1	

Host	2	0	 1	

1	

Fair	

Efficient	

Congested	

A	star9ng	
point	

CSE	461	University	of	Washington	 103	

AIMD	Game	(5)	
•  Always	converge	to	good	
alloca9on!	Host	1	

Host	2	0	 1	

1	

Fair	

Efficient	

Congested	

A	star9ng	
point	

CSE	461	University	of	Washington	 104	

AIMD	Sawtooth	
•  Produces	a	“sawtooth”	pa\ern		
over	9me	for	rate	of	each	host	
–  This	is	the	TCP	sawtooth	(later)	

Mul9plica9ve	
Decrease	

Addi9ve	
Increase	

Time	

Host	1	or	
2’s	Rate	

CSE	461	University	of	Washington	 105	

AIMD	Proper9es	
•  Converges	to	an	alloca9on	that	is	
efficient	and	fair	when	hosts	run	it	
–  Holds	for	more	general	topologies	

•  Other	increase/decrease	control	
laws	do	not!	(Try	MIAD,	MIMD,	MIAD)	

•  Requires	only	binary	feedback		
from	the	network	

Feedback	Signals	
•  Several	possible	signals,	with	different	pros/cons	

– We’ll	look	at	classic	TCP	that	uses	packet	loss	as	a	signal	

CSE	461	University	of	Washington	 106	

Signal Example Protocol Pros / Cons
Packet loss TCP NewReno

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Packet delay Compound TCP

(Windows)
Hear about congestion early

Need to infer congestion
Router

indication
TCPs with Explicit

Congestion Notification
Hear about congestion early

Require router support

