Project 1 Discussion

Ming Liu

Bug — Partl Step C2

* If you receive 16 bytes as the payload len, it's a mistake in
our implementation so you can disregard that as it doesn't
affect any of the later stages anyway. However don't make

the same mistake in your part 2 stage c2.

Key Data Structure = <netinet/in.h>

e Genericsocket address structure

* IPv4 socket address structure

Host Byte Order and Network Byte Order

* Big endian and little endian
v’ Intel, PowerPC

* htons, htonl, ntohs, ntohl

TCP = Connection Oriented Service

TCP Server

| socket() |

TCP Client I accept() |

blocks until
connection
from client

| socket() |

h 4

| connect() I<— TCP connection establishment ————

v Y

I write() }—, data (request) ———»I read()

do something

‘_"'_I write()

Y —————— data (reply)
read() |

close() '—— EOF notification H read() |

| close() |

UDP = Connection Less Service

UDP Server
socket()
Y
bind()
UDP Client

socket() \d
recvirom() .

|

Y blocks until datagram
e sendto() received from the client
data (request) _\"

do something

Y
—— recvirom() «———— data (reply)

-— sendto()

\ 4
close()

Handle Multiple Clients 1 = Multi-processes

Handle Multiple Clients 2 = |/O multiplexing

process blocks in
callto select,

waiting for one of ¢
possibly many sockets
to become readable

N

process blocks while
data copied intog
application buffer

e Select
* poll / epoll

application

gselect

recviyronm

process
datagram

system call

kernel

return readable

= nodatagram ready

system call

datagram ready

return OK

" copy datagram

copy complete

~

y wail for data

copy data from
kemnel to user

/O blocking

process blocks in
call to recvirom

~

application

recvirom

process
datagram

system call

returm OK

>

kermel

no datagram ready

Y

datagram ready

copy datagram

copy complete

J\.

» wait for data

| Copy data from
kernel to user

/O non-blocking

process repeatedly
calls recvirom,
waiting for an OK

return (polling)

e fcntl API

~

application

recvirom

recvirom

recvifrom

recvirom

process
datagram

kemnel
system call no datagram ready
EWOULDBLOCK
system call = nodatagram ready
EWOULDBLOCK
—-
svstem call no datagram ready
25 EWOULDBLOCK
system call - datagram ready
copy datagram
return OK
i copv complete

~

J\

> wait for data

>mpy data from
kemel to user

Multithread

e Kernel thread supported
* Pthread --> Threadpool

* Select, Poll, Epoll
e USENIX ATC 1999, Flash: An Efficient and Portable Web Server

* Unix Network Programming Volume 1

