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Bug — Partl Step C2

* If you receive 16 bytes as the payload len, it's a mistake in
our implementation so you can disregard that as it doesn't
affect any of the later stages anyway. However don't make

the same mistake in your part 2 stage c2.



Key Data Structure = <netinet/in.h>

e Genericsocket address structure

* IPv4 socket address structure




Host Byte Order and Network Byte Order

* Big endian and little endian
v’ Intel, PowerPC

* htons, htonl, ntohs, ntohl



TCP = Connection Oriented Service
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UDP = Connection Less Service
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Handle Multiple Clients 1 = Multi-processes




Handle Multiple Clients 2 = |/O multiplexing
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/O blocking
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/O non-blocking
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Multithread

e Kernel thread supported
* Pthread --> Threadpool

* Select, Poll, Epoll
e USENIX ATC 1999, Flash: An Efficient and Portable Web Server

* Unix Network Programming Volume 1



