Topics (2)

3. Retransmissions

— Handling loss

4. Multiple Access 7 N
— Classic Ethernet, 802.11
—=f
5. Switching |
—=f

— Modern Ethernet
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Topic
* Two strategies to handle errors:

1. Detect errors and retransmit frame
(Automatic Repeat reQuest, ARQ)

2. Correct errors with an error

correcting code
Done this
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Context on Reliability

* Where in the stack should we
place reliability functions?

Application

Transport

Network
Link
Physical
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Context on Reliability (2)

* Everywhere! It is a key issue
— Different layers contribute differently

Recover actions

Application (correctness)
Transport
Network T
Link
' Mask errors
Physical (performance optimization)
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ARQ

e ARQ often used when errors are
common or must be corrected

— E.g., WiFi, and TCP (later)

 Rules at sender and receiver:

— Receiver automatically acknowledges
correct frames with an ACK

— Sender automatically resends after a
timeout, until an ACK is received



ARQ (2)

 Normal operation (no loss)

Sender Receiver

ACK l
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ARQ (3)

* Loss and retransmission

Sender Receiver

Time

|
—

Timeout
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So What’s Tricky About ARQ?

* Two non-trivial issues:
— How long to set the timeout? »

— How to avoid accepting duplicate
frames as new frames »

* Want performance in the common
case and correctness always
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Timeouts

* Timeout should be:
— Not too big (link goes idle)
— Not too small (spurious resend)

* Fairly easy on a LAN
— Clear worst case, little variation

* Fairly difficult over the Internet
— Much variation, no obvious bound
— We’ll revisit this with TCP (later)
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Duplicates
 What happens if an ACK is lost?

Sender Receiver

Timeout %

CSE 461 University of Washington
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Duplicates (2)
 What happens if an ACK is lost?

Sender Receiver

Timeout %

Frame
\ New
/ Frame??

ACK
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Duplicates (3)
e Or the timeout is early?

Sender Receiver

Timeout /AC/

CSE 461 University of Washington
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Duplicates (4)
e Or the timeout is early?

Sender Receiver

Timeout P{
Frame New

/ Frame??
ACK
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Sequence Numbers

* Frames and ACKs must both carry
sequence numbers for correctness

* To distinguish the current frame
from the next one, a single bit (two
numbers) is sufficient

— Called Stop-and-Wait

CSE 461 University of Washington
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Stop-and-Wait

In the normal case:

Sender Receiver

Time

l

CSE 461 University of Washington
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Stop-and-Wait (2)

* |In the normal case:

Sender Receiver
Timeout ACK Time

me 1 l
ACK 1
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Stop-and-Wait (3)
* With ACK loss:

Sender Receiver

Timeout m

CSE 461 University of Washington 17



Stop-and-Wait (4)
* With ACK loss:

Sender Receiver

Timeout m

Frame O
\ It's a
/ Resend!

ACKO
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Stop-and-Wait (5)

* With early timeout:

Sender Receiver
Timeout ACK
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Stop-and-Wait (6)

* With early timeout:

Sender Receiver
Timeout ACK
Frame It’s a

e,,,/fff””” Resend
OK ... ACKO
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Limitation of Stop-and-Wait

* It allows only a single frame to be
outstanding from the sender:

— Good for LAN, not efficient for high BD
]

m=

L
* Ex: R=1 Mbps, D =50 ms

— How many frames/sec? If R=10 Mbps?

CSE 461 University of Washington
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Sliding Window

* Generalization of stop-and-wait

— Allows W frames to be outstanding
— Can send W frames per RTT (=2D)

= b

— Various options for numbering
frames/ACKs and handling loss
* Will look at along with TCP (later)

CSE 461 University of Washington
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Multiple devices?

* Multiplexing is the network word
for the sharing of a resource

* Classic scenario is sharing a link
among different users
— Time Division Multiplexing (TDM) »

— Frequency Division Multiplexing
(FDM) »

CSE 461 University of Washington
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Time Division Multiplexing (TDM)

e Users take turns on a fixed schedule

1 e

Round-robin
2 TDMmux—>2132132—>
3 - kGuard time
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Frequency Division Multiplexing (FDM)

* Put different users on different frequency bands

)
B

5 " Channel 2

E e L \ Channel 1 Channel 3
c 1 \

5=l

: B* o/

>

: /A ALV
= 5§ [ L !
<C | 60 64 68 72

Channel 3 l. Frequency (kHz)
/A [\ )/
A A Lpe— o —4 7'2/ Overall FDM channel

Frequency (Hz) Frequency (kHz)
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TDM versus FDM

* |In TDM a user sends at a high rate a
fraction of the time; in FDM, a user
sends at a low rate all the time

Rate TDM

A Time

FDM

CSE 461 University of Washington
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TDM versus FDM (2)

* |In TDM a user sends at a high rate a
fraction of the time; in FDM, a user
sends at a low rate all the time

Lo,

CSE 461 University of Washington
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TDM/FDM Usage

 Statically divide a resource

— Suited for continuous traffic, fixed
number of users

* Widely used in telecommunications
— TV and radio stations (FDM)

— GSM (2G cellular) allocates calls using
TDM within FDM

CSE 461 University of Washington
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Multiplexing Network Traffic

* Network traffic is bursty
— ON/OFF sources
— Load varies greatly over time

Ra‘te
>Time
Rate
A
>Time

CSE 461 University of Washington
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Multiplexing Network Traffic (2)

* Network traffic is bursty
— Inefficient to always allocate user
their ON needs with TDM/FDM

CSE 461 University of Washington
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Multiplexing Network Traffic (3)

* Multiple access schemes multiplex users according to
their demands — for gains of statistical multiplexing

Two users, each need R Together they need R’ < 2R

Rate
A

>Time
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Multiple Access

* We will look at two kinds of multiple
access protocols

1. Randomized. Nodes randomize their
resource access attempts
—  Good for low load situations
2. Contention-free. Nodes order their
resource access attempts

—  Good for high load or guaranteed
quality of service situations

CSE 461 University of Washington
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Random MAC

* We will explore random multiple
access control (MAC) protocols

— This is the basis for classic Ethernet

— Remember: data traffic is bursty

== == ==/

CSE 461 University of Washington
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ALOHA Network

* Seminal computer network @
f

connecting the Hawaiian ©
islands in the late 1960s @ y
o)
— When should nodes send? . Da l
Hawaii
— A new protocol was devised ©)

by Norm Abramson ...
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ALOHA Protocol

e Simple idea:
— Node just sends when it has traffic.

— If there was a collision (no ACK
received) then wait a random time
and resend

* That’s it!

CSE 461 University of Washington
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ALOHA Protocol (2)

* Some frames will s

be lost, but many *
may get through... | -
! [ ] o
. | o
* Good idea? E o [
CoIIisionxi/ﬂ,—J Time — L—‘igollision
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ALOHA Protocol (3)

* Simple, decentralized protocol that
works well under low load!

* Not efficient under high load
— Analysis shows at most 18% efficiency

— Improvement: divide time into slots
and efficiency goes up to 36%

 WEe'll look at other improvements

CSE 461 University of Washington
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Classic Ethernet

 ALOHA inspired Bob Metcalfe to
invent Ethernet for LANs in 1973

— Nodes share 10 Mbps coaxial cable

— Hugely popular in 1980s, 1990s

CSE 461 University of Washington

s

: © 2009 IEEE

38



CSMA (Carrier Sense Multiple Access)

* Improve ALOHA by listening for
activity before we send (Dohl!)

— Can do easily with wires, not wireless

 So does this eliminate collisions?
— Why or why not?
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CSMA (2)

 Still possible to listen and hear
nothing when another node is
sending because of delay

CSE 461 University of Washington
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CSMA (3)

* CSMA is a good defense against
collisions only when BD is small

> X <€

CSE 461 University of Washington
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CSMA/CD (with Collision Detection)

* Canreduce the cost of collisions by
detecting them and aborting (Jam)
the rest of the frame time

— Again, we can do this with wires

XXXXXXXX @

==/ ==/ ==/

CSE 461 University of Washington
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CSMA/CD Complications

* Want everyone who collides to
know that it happened

— Time window in which a node may
hear of a collision is 2D seconds

—> X <

CSE 461 University of Washington
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CSMA “Persistence”

* What should a node do if another
node is sending?

|What now?l
h
I | |1J

==/ ==/

* |dea: Wait until it is done, and send

CSE 461 University of Washington
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CSMA “Persistence” (2)

* Problem is that multiple waiting
nodes will queue up then collide

— More load, more of a problem

==/ ==/ ==/

CSE 461 University of Washington
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CSMA “Persistence” (3)

* |Intuition for a better solution

— |If there are N queued senders, we

want each to send next with
probability 1/N

==/ ==/ ==/

CSE 461 University of Washington
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Binary Exponential Backoff (BEB)

* Cleverly estimates the probability
— 1st collision, wait 0 or 1 frame times
— 2nd collision, wait from 0 to 3 times
— 3rd collision, wait from 0 to 7 times ...

e BEB doubles interval for each
successive collision

— Quickly gets large enough to work
— Very efficient in practice

CSE 461 University of Washington
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Classic Ethernet, or IEEE 802.3

* Most popular LAN of the 1980s, 1990s

— 10 Mbps over shared coaxial cable, with baseband signals
— Multiple access with “1-persistent CSMA/CD with BEB”

—/— ﬁ —/—
Interface

Transceiver \
\ cable

Ether % 53 % % 53
T~ E E E E S -
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Ethernet Frame Format

* Has addresses to identify the sender and receiver
* CRC-32 for error detection; no ACKs or retransmission
» Start of frame identified with physical layer preamble

Packet from Network layer (IP)

(C
Destination| Source ” Check-

FISSmDie address address Type Hai e sum

({4
J)

Bytes 8 6 6 2 0-1500 0-46 4
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Modern Ethernet

* Based on switches, not multiple
access, but still called Ethernet

— We'll get to it in a later segment

Switch ~

g,/ ol
””/H\ Switch ports

Twisted pair

CSE 461 University of Washington
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Wireless Complications

* Wireless is more complicated than
the wired case (Surprise!)

1. Nodes may have different areas of
coverage — doesn’t fit Carrier Sense »

2. Nodes can’t hear while sending —
can’t Collision Detect »

7 N\

# CSMA/CD
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Different Coverage Areas

* Wireless signal is broadcast and
received nearby, where there is

sufficient SNR
\\%; M/
— | B|[=— D
i t;“\ /1;

B EE—

Radio range
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Hidden Terminals

* Nodes A and C are hidden terminals when sending to B
— Can’t hear each other (to coordinate) yet collide at B

— We want to avoid the inefficiency of collisions

M; M;
i@\ /p\
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Exposed Terminals

 Band C are exposed terminals when sendingto Aand D
— Can hear each other yet don’t collide at receivers A and D

— We want to send concurrently to increase performance

w; w;
/@ /@\
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Nodes Can’t Hear While Sending

* With wires, detecting collisions
(and aborting) lowers their cost

e More wasted time with wireless

Wired Wireless
Collision Collision
H Resend Resend
159.0.0.0.0.9.0.9.(
H Time POOOXXXXXX

—>
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Possible Solution: MACA

* MACA uses a short handshake instead of CSMA (Karn, 1990)
— 802.11 uses a refinement of MACA (later)

* Protocol rules:
1. A sender node transmits a RTS (Request-To-Send, with frame
length)
2. The receiver replies with a CTS (Clear-To-Send, with frame length)
3. Sender transmits the frame while nodes hearing the CTS stay silent

— Collisions on the RTS/CTS are still possible, but less likely

CSE 461 University of Washington 56



MACA — Hidden Terminals

« A—>B with hidden terminal C
1. AsendsRTS, toB

CSE 461 University of Washington
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MACA — Hidden Terminals (2)

 A->B with hidden terminal C
2. Bsends CTS, to A, and C too

RTS

CSE 461 University of Washington
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MACA — Hidden Terminals (3)

 A->B with hidden terminal C
2. Bsends CTS, to A, and C too

RTS l‘ulﬂll

A B C D
CTS CTS
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MACA — Hidden Terminals (4)

* A->B with hidden terminal C
3. A sends frame while C defers

T e

Frame g [c D

it;\

CSE 461 University of Washington



MACA — Exposed Terminals

« B>A, C—2>D as exposed terminals
—Band Csend RTSto Aand D

CSE 461 University of Washington
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MACA — Exposed Terminals (2)

« B>A, C—2>D as exposed terminals
— Aand Dsend CTStoBand C

RTS RTS
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MACA — Exposed Terminals (3)

« B>A, C—2>D as exposed terminals
— Aand Dsend CTStoBand C

RTS RTS
CTS CTS
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MACA — Exposed Terminals (4)

« B>A, C—2>D as exposed terminals
— Aand Dsend CTStoBand C

F F
A rame B C rameE
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802.11, or WiFi

* Very popular wireless LAN To Network
started in the 1990s

* Clients get connectivity from a
(wired) AP (Access Point)

* It’s a multi-access problem ©

* Various flavors have been
developed over time
— Faster, more features
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802.11 Physical Layer

e Uses 20/40 MHz channels on ISM bands

— 802.11b/g/n on 2.4 GHz
— 802.11 a/non 5 GHz

* OFDM modulation (except legacy 802.11b)
— Different amplitudes/phases for varying SNRs
— Rates from 6 to 54 Mbps plus error correction

— 802.11n uses multiple antennas; see “802.11
with Multiple Antennas for Dummies”

CSE 461 University of Washington

66



802.11 CSMA/CA for Multiple Access

* Sender avoids collisions by inserting small random gaps
— E.g., when both B and C send, C picks a smaller gap, goes first

Station (A sends to D v D acks A

A | Data || Ack
:

a B ready to send | B sends to D D acks B

' | ¥ ¥
B y [ | Data || Ack |

= Y v
Wait for idle :Backoff Wait for idle I Rest of backoff
C ready to Send : '/C SendS to D '/‘| D aCkS C
C ' | | Data | Ack :
Tlmg —
. v N (_J

Wait for idle Backoff

CSE 461 University of Washington 67



The Future of 802.11 (Guess)

* Likely ubiquitous for Internet connectivity

— Greater diversity, from low- to high-end devices
* |[nnovation in physical layer drives speed

— And power-efficient operation too
* More seamless integration of connectivity

— Too manual now, and limited (e.g., device-to-device)
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Issues with Random Multiple Access

 CSMA is good under low load:
— Grants immediate access
— Little overhead (few collisions)

* But not so good under high load:
— High overhead (expect collisions)
— Access time varies (lucky/unlucky)

e We want to do better under load!
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Turn-Taking Multiple Access Protocols

* They define an order in which
nodes get a chance to send

— Or pass, if no traffic at present

* We just need some ordering ...
— E.g., Token Ring »
— E.g., node addresses
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Token Ring

* Arrange nodes in a ring; token rotates “permission to
send” to each node in turn

Tok
Node \ ‘/no €

Direction of\
transmission

CSE 461 University of Washington
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Turn-Taking Advantages

* Fixed overhead with no collisions

— More efficient under load

* Regular chance to send with no
unlucky nodes

— Predictable service, easily extended
to guaranteed quality of service

CSE 461 University of Washington
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Turn-Taking Disadvantages

* Complexity

— More things that can go wrong
than random access protocols!

* E.g., what if the token is lost?
— Higher overhead at low load

CSE 461 University of Washington
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Turn-Taking in Practice

* Regularly tried as an improvement
offering better service

— E.g., qualities of service

* But random multiple access is

hard to beat
— Simple, and usually good enough
— Scales from few to many nodes

CSE 461 University of Washington
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Topic

* How do we connect nodes with a
switch instead of multiple access

— Uses multiple links/wires
— Basis of modern (switched) Ethernet

==/ ==/
@ﬂ@

Switch

CSE 461 University of Washington
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Switched Ethernet

e Hosts are wired to Ethernet
switches with twisted pair

— Switch serves to connect the hosts
— Wires usually run to a closet

Switch

L — i
— ”/H”\ Switch ports

Twisted pair
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What’'s in the box?

* Remember from protocol layers:

Hub, or Physical |Physical

R e S —

repeater All look like this:

Switch Link Link ’7
- 1 | I —

Network | Network
Link Link

S e

Router
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Inside a Hub

* All ports are wired together; more convenient and

reliable than a single shared wire
Port

O a2 £ &
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Inside a Switch

* Uses frame addresses to connect input port to the right
output port; multiple frames may be switched in parallel

—f
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Inside a Switch (2)

* Port may be used for both input and output (full-duplex)
— Just send, no multiple access protocol

1 5 Port\ -

2 _:' SRER 194

3 5 and
E 2> 3

s S5
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Inside a Switch (3)

* Need buffers for multiple inputs to send to one output

&= e
== ==/
Input 5—* o >Q Output

o T ey

/ ' \
Input Buffer Fabric Output Buffer
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Inside a Switch (4)

e Sustained overload will fill buffer and lead to frame loss

I L e

/ ' \
Input Buffer Fabric Output Buffer
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Advantages of Switches

* Switches and hubs have replaced the
shared cable of classic Ethernet

— Convenient to run wires to one location

— More reliable; wire cut is not a single
point of failure that is hard to find

* Switches offer scalable performance

— E.g., 100 Mbps per port instead of 100
Mbps for all nodes of shared cable / hub

CSE 461 University of Washington
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