Error Detection

* Some bits may be received in error
due to noise. How do we detect this?

— Parity »
— Checksums »
— CRGCs »

* Detection will let us fix the error, for
example, by retransmission (later).

CSE 461 University of Washington

Simple Error Detection — Parity Bit

 Take D data bits, add 1 check bit
that is the sum of the D bits

— Sum is modulo 2 or XOR

CSE 461 University of Washington

Parity Bit (2)

 How well does parity work?
— What is the distance of the code?

— How many errors will it detect/
correct?

 What about larger errors?

CSE 461 University of Washington

Checksums

* |dea: sum up data in N-bit words
— Widely used in, e.g., TCP/IP/UDP

1500 bytes 16 bits

e Stronger protection than parity

CSE 461 University of Washington

Internet Checksum

 Sum is defined in 1s complement
arithmetic (must add back carries)

— And it’s the negative sum

* “The checksum field is the 16 bit one's
complement of the one's complement
sum of all 16 bit words ...” — RFC 791

CSE 461 University of Washington

Internet Checksum (2)

Sending:
1. Arrange data in 16-bit words
2. Put zero in checksum position, add

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

CSE 461 University of Washington

0001
£203
£f4£f5
f6f7

Internet Checksum (3)

. 0001
Sending: £03
1. Arrange data in 16-bit words ein
2. Put zero in checksum position, add +(0000)

2dd£0

3. Add any carryover back to get 16 bits + 5

4. Negate (complement) to get sum 220d

CSE 461 University of Washington

Internet Checksum (4)

iving: 0001
Receiving: 0001
1.Arrange data in 16-bit words 5465’

+ 220d

2.Checksum will be non-zero, add

3.Add any carryover back to get 16 bits

4.Negate the result and check it is O

CSE 461 University of Washington

Internet Checksum (5)

Ning- 0001
Receiving: £203

. . £4£5
1.Arrange data in 16-bit words f6E7

+ 2204

2.Checksum will be non-zero, add

3.Add any carryover back to get 16 bits

4.Negate the result and check itis O 0000

CSE 461 University of Washington

Internet Checksum (6)

* How well does the checksum work?
— What is the distance of the code?

— How many errors will it detect/
correct?

 What about larger errors?

CSE 461 University of Washington

10

Cyclic Redundancy Check (CRC)

* Even stronger protection

— Given n data bits, generate k check
bits such that the n+k bits are evenly
divisible by a generator C

 Example with numbers:
— n =302, k =one digit, C=3

CSE 461 University of Washington

11

CRCs (2)

* The catch:

— It’s based on mathematics of finite
fields, in which “numbers”
represent polynomials

— e.g, 10011010 is x” + x* + x3 + x1

 What this means:

— We work with binary values and
operate using modulo 2 arithmetic

CRCs (3)

* Send Procedure:

1. Extend the n data bits with k zeros
2. Divide by the generator value C

3. Keep remainder, ignore quotient
4. Adjust k check bits by remainder

 Receive Procedure:
1. Divide and check for zero remainder

CSE 461 University of Washington 13

CRCs (4)

Databits: 1001111010111 1 1
1101011111

Check bits:
C(x)=x*+x1+1
C=10011
k=4

CSE 461 University of Washington

14

CRCs (5)

1 0 =— Quotient (thrown away)
10 0 0 O =— Frame with four zeros appended

11 0 00O 1

— =~ 0 OO0 OO0 OO0 O
O (0 Q00|00

— |0 OO0 OO0 O

O 0000 O

— Q|

Ll

10011 [

1 0 =— Remainder

—|— —|O0|00
—O OO0 |00
O~ O|— «—
Of= =~

-

1T 1 1T 1 0 0 1 0 -=— Frame with four zeros appended

10 1 01

Transmitted frame:

minus remainder

15

CSE 461 University of Washington

CRCs (6)

* Protection depend on generator

— Standard CRC-32 is 10000010
01100000 100011101101101112

* Properties:
— HD=4, detects up to triple bit errors
— Also odd number of errors
— And bursts of up to k bits in error

Error Detection in Practice

* CRCs are widely used on links
— Ethernet, 802.11, ADSL, Cable ...

e Checksum used in Internet
— |P, TCP, UDP ... but it is weak

* Parity
— Is little used

CSE 461 University of Washington

17

