
1

CSE 461 – TCP Flow Control
TCP Congestion Control

Part 0: Sliding Window Review

Sender Receiver

T
im

e

…
…

2

Part 0: TCP and Sliding Window

• TCP uses sliding window

– ARQ for reliability

• Timeout and resend if ACK doesn’t arrive

– Send and receive buffers

• Sender

– save copies in case you have to retransmit

• Receiver

– Re-order buffer in case segments arrive out of order

– Re-order buffer in case some segments are lost

– Speed matching buffer in case segments arrive in bursts

3

Part 1: There’s still a problem…

• A sender may choose a sliding window size that can overwhelm the

receiver

– Sender is more powerful machine than receiver

– Producing data is cheaper than consuming it

• Effects of buffer overrun on…?

– Reliability?

– Performance?

• What can we do about it?

– Flow control

Sender Receiver

3

Flow Control in TCP

• Basic Idea:

– Let receiver tell sender how much free buffer space receiver has

– Update the value regularly

• Another take on the basic idea:
– Decouple acknowledgements from window size

5

TCP flow control

4

djw // CSE

461, Fall 2011

TCP Header Format

• Advertised window is used for flow control

Window size

7

One Additional Problem

• Window advertisement messages can’t be part of ARQ

scheme

– Receiver sends segment with:

• ACK set to last byte received in order + 1

• Updated window size

• No data (data length = 0)

– So, sender sequence number == last data sent sequence number

– Even if sender ACKs the window advertisement message,

receiver can’t distinguish that from ACKing the previous data

segment

8

5

One Additional Problem (cont.)

• So… window advertisement messages are unreliable

– Can’t be ACK’ed

• Why is that a problem?

– What can go wrong if one is lost?

• How can you fix the problem?

9

Window size deadlock problem

10

6

Part 2: There’s still a problem…

11

Sender Receiver

Buffer overrun at router

Congestion: The bottleneck is inside the network

But memory is cheap…

• Why not just have really big router buffers?

– Doesn’t fix the problem

• If input rate vs. output rate imbalance persists,
it will overrun any buffer size

– Increases delay and delay variance

• A packet lucky enough to be queued at the router may have
to wait a long time before transmission

• Sometimes the queue is empty, sometimes it’s nearly full…

• Big router buffers aren’t a solution

12

7

What is a solution?

13

Sender Receiver

Sender should control the rate at which it sends

to avoid overloading the bottleneck router

Ideally, packets arrive at bottleneck router just as it has a free
transmission slot…

Flow vs. Congestion Control

A slow network feeding a high-
capacity receiver � congestion

control is needed

A fast network feeding a low-capacity receiver � flow control is needed

8

When is network “congested”?

Efficient use of bandwidth gives high goodput, low delay

Delay begins to rise sharply

when congestion sets in
Goodput rises more slowly than

load when congestion sets in

Why does this congestion collapse
occur?

• Buffer intended to absorb bursts when input rate > output

• But if sending rate is persistently > drain rate, queue builds

• Dropped packets represent wasted work; goodput < throughput

Destination
1.5-Mbps T1 link

Router

Source
2

Packets dropped here

9

What should the sending rate be?

• Cannot be too close to the capacity

• In practice, a good operating point optimizes the “power”

metric

– Power = goodput/ delay

• It will rise with send rate until delay starts to climb rapidly

– Knee of the curve gives a good operating point.

What about fairness?

Defining “fairness” is complicated…

Router

Source
2

Source
1

Source
3

Router

Router

Destination
2

Destination
1

10

TCP Fairness: Max-Min Fairness

Fairness goal: if K TCP sessions share same bottleneck link of bandwidth R, each should have average rate of R/K…except that if any flows can’t use their share, the excess is equally divided among those that can
TCP connection 1

bottleneck

router

capacity R
TCP connection 2

How to effect congestion control?

• The bottleneck router knows its state
– It seems like a natural choice from being in charge of throttling the sender, but…

• TCP and the Internet have substantial deployment when the need
for congestion control is realized

– Using routing to go around congested portions of the Internet hasn’t
worked out…

• Approach: modify the TCP implementations on end hosts, and
deploy updated implementations host-by-host
– Good idea, but you need a solution that doesn’t require router cooperation

– Actual solution: even better! Requires changes only to the sender’s
implementation

11

Sender-based congestion control

21

Time

O
ff

e
re

d
 L

o
a

d
 (

s
e

n
d

 r
a

te
)

Unknown bottleneck capacity

It’s actually a little more complicated

22

Time

O
ff

e
re

d
 L

o
a

d
 (

s
e

n
d

 r
a

te
)

12

TCP congestion control

• No long-term history information used

– Path to some destination right now may not be similar to path

last time

• “Learn” current bottleneck capacity

– Start conservatively

– Ramp up rate if things look good

– Reduce rate if things look not so good

– Slash rate if things look bad

How to ``learn” about bottlenecks?

• Implicit feedback
– No (new) router feedback

– No (new) receiver feedback

• Use losses
– If you time out and retransmit, assume a congestion loss has

occurred

• Learning the bottleneck capacity
– Increase the sending rate until there is a loss

– When convincing losses occur, decrease the sending rate

13

Controlling Send Rate

• The send rate is controlled using a congestion window

• If everything remains fixed, the send rate is

send rate = CWND / RTT

• Sender’s rate is limited by the min of the flow control and

congestion windows

• How to increase/decrease rate means how to adjust CWND

– How?

25

AIMD (Additive Increase/Multiplicative Decrease)

• Additive Increase

– Ramp up slowly

– In particular, increase rate by a constant for every t seconds that things

continue to look good

• Multiplicitive Decrease

– Ramp down quickly

– Ramp down by a fraction of your current rate, not a constant
• If you’re going fast, you ramp down a lot

• If you’re going slowly, your ramp down a little

– If all flows detect the bottleneck at the same time, total reduction is a

fraction of the bottleneck load
• Works no matter what the bottleneck capacity is, in absolute terms

14

TCP’s AIMD Mechanism

• Additive constant for increase:
1 MSS

• Time interval = 1 RTT
– Rate of increase = MSS / RTT

• Simple implementation:
– Each ACK received

Cwnd += 1/Cwnd MSS

• Multiplicative constant for decrease:
– Cwnd /= 2

• TCP uses a version of this

Source Destination

…

AIMD Sawtooth Pattern

• TCP has evolved, but is based on the notion of AIMD

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

C
w

n
d
 (

K
B

)

T ime (seconds)

70

30

40

50

10

10.0

15

Why is TCP fair?

Two competing sessions:• additive increase gives each a slope of 1, as throughout increases• multiplicative decrease decreases throughput proportionally
R

R

equal bandwidth share

Connection 1 throughput

Bonus Property: “Self-Clocking” the
sending rate

• ACKs pace transmissions at approximately the

bottleneck rate

• So just be sending packets we can discern the “right”

sending rate (called the packet-pair technique)

Sink
45 Mbps T3 linkRouter100 Mbps Ethernet

16

TCP has evolved…

• Increasing CWND by one MSS every RTT can be very

slow

– Example: If a src can send at a rate of 1.5Gbps, how many

RTTs will it take before src can send at capacity? (assume 1500

byte MSS)

• Reacting to a loss may take a long time since it takes

forever to learn that there has been a loss

– Related to the retransmission timeout, which is related to the

mean and variance of the RTT

TCP congestion control

• Slow Start (not really slow)

– Pick a threshold and increase exponentially until you hit the

threshold, then do additive increase

– (This is “slow” relative to just starting out by sending a full flow-control window as
fast as you can.)

• Fast Retransmit

– Triple duplicate ACKs hint that a loss has occurred

L17.32

17

TCP “Slow Start”

• Until slow start threshold

– Each ACK received:

CWND += 1 MSS

– Doubles CWND every RTT

• When the slow start threshold is

reached, start additive increase

– CWND +=1 / CWND

Source Destination

…

Reached slow start
threshold

Combining Slow Start and
multiplicative decrease

• Slow start is used initially, and after every
timeout

• Instead of multiplicative decrease
– Reduce the slow start threshold by half

ssthresh

18

Fast Retransmit

• TCP uses cumulative

acks, so duplicate acks

start arriving after a

packet is lost.

• We can use this fact to

infer which packet was

lost, instead of waiting

for a timeout.

• 3 duplicate acks are

used in practice

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Retransmit

packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

Fast Recovery

• Use AIMD when there are single packet losses. Only

slow start the first time.

• On experiencing a loss

– Set the slow start threshold to half the current CWND

– Start at slow start threshold and do additive increase

19

Slow start example

L17.37

TCP Congestion Control

No need to slow-start

20

High-speed, High-delay TCP

• Single connection over 10 Gbps / 70 msec. RTT / 1500 byte packets

– 256MB of total buffer on the path

• Slow start increases send rate exponentially

– After 17 RTT (1.2 sec.) sending at 11.2 Gbps

– Losses cause halving of send rate followed by linear increase

• Result?

– Takes 41 sec. to get to recover to 10Gbps

– Takes 34 min 22 sec to saturate buffers and detect losses

– This requires a bit error rate no greater than 10-14

• or we’ll be responding to bit errors rather than congestion

– 1.95 TB sent between losses

– 7.55 Gbps long-term transmission rate

39

One Approach: “Parallel” TCP

• Pretend a single TCP stream is really N TCP streams

40

http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-2/gigabit_tcp.html

21

Scalable TCP

41

Additive increase: a packets/ACK
Multipliciative decrease: factor of (1-b)

