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CSE 461 – The Transport Layer

The Transport Layer

• Focus

– How do we (reliably) connect processes?

– This is the transport layer

• Topics

– Naming end points

– UDP: unreliable transport

– TCP: reliable transport

• Connection setup / teardown
Physical

Link

Network

Transport

Application
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The Transport Layer

• Builds on the services of the Network layer

– “TCP/IP”

• Communication between processes running on hosts

– Naming/Addressing

• Guarantees about message delivery make (more) sense

– This is the first layer that is talking “end-to-end”
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The Layers Below: Network

• Network layer provides:

– A name space for hosts (interfaces)

• IP addresses

– Framing (message boundaries)

• Packets

– “0 or more” delivery semantics

• Packets may be lost

• Packets usually aren’t duplicated by the network

– Byte transmission

• No data types (except in headers)
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The Layers Below: Network

• Network layer imposes:

– Not all hosts are reachable

• NATs

– Packets may arrive out of order

• Routing table updates

– Maximum packet size

• 65,535 bytes, including header (216 – 1)

– IPv6: optionally, up to 4GB

– Variable transmission speeds

• 100’s of bits/sec to 10’s of gigabits/sec

– Variable delays

• 10’s of microseconds to seconds

We want the transport “to work” despite all this.
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The Layers Below: Link/Physical

• Link layer provides:

– A name space
• MAC addresses

– May, or may not, provide data integrity
• Checks sums  (in the general sense of error detection/correction)

– Broadcast/multicast
• Maybe

• Link layer imposes:

– Variable delivery probability
• Wired vs. wireless

– Maximum frame size
• Ethernet: 1500 bytes

– Jumbo: 9K
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Effect on Transport Protocols

• A transport layer packet may traverse many different 

kinds of networks

• Functionality:

– Can’t rely on very much from the lower layers

• “Best effort” delivery, hop by hop

• Performance:

– What can the transport layer do about delay?

– What can the transport layer do about throughput?

– Notion of a bottleneck link

• The hop most limiting performance
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Internet Transport Protocols

• UDP

– Datagram abstraction between processes

– Reliability:  Never delivers data that wasn’t sent
• Error detection (data integrity)

• TCP

– Bytestream abstraction between processes

– Reliability:  In order, at-most-once delivery
• ARQ with a sliding window

– Connections

– Flow control
• Throttle sender based on receiver’s capabilities

– Congestion control (later!)
• Throttle sender based on network’s capabilities
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Comparison of TCP/UDP/IP properties

UDP

• Datagram oriented

• Lost packets

• Reordered packets

• Duplicate packets

• Limited size 
packets

IP

• Datagram oriented

• Lost packets

• Reordered packets

• Duplicate packets

• Limited size 
packets

TCP

• Connection-oriented

• Reliable byte-stream

– In-order delivery

– Single delivery

– Arbitrarily length

• Synchronization

• Flow control

• Congestion control
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Relation to layers
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Transport layer sends segments in packets (in frames)

Segment

Segment
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Naming: IP address + port number

• You know these from the projects…

• How does client determine the name of the receiver?

– IP address: use the DNS name service

• Project 4 is very like DNS;  DNS is very like Project 4

• We’ll look at the Internet’s DNS a bit later

– Port:  ?

• Project 4 provides a translation from a “well known name” to a port

• DNS does not (mostly)
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Determining Internet Port Numbers

• Servers typically bind to well-known port numbers

– Ports below 1024 reserved for well-known services

• look in /etc/services

• Clients use OS-assigned temporary (ephemeral) ports

– Above 1024, recycled by OS when client finished
• (Some clients try to bind to a particular ephemeral port, to act well-known within some restricted 

community.)
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Some well-known (TCP) ports
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Is there a mechanism to verify you’ve connected to what you intended?    No.

Can a well-known server use a non-standard port?  Yes.

What’s the security provided by using a non-standard port?  None.

What’s the benefit of using a non-standard port?  Minimal.

Why are there well-known ports, again?

TCP Socket Interface (connection-oriented)

Server

Socket()

Bind()

Accept()

Recv()

Recv()

Client

Socket()

Listen()

Send()

Connect()

Send()

Block until

connect

Block until

data

Connection Establishment.

Data (request)

Data (reply)
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Java wraps these together

Block until

data
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UDP Socket Interface (connectionless)

Server

Socket()

Bind()
Client

Socket()

Recvfrom()

Sendto()

Bind()

Sendto()

Recvfrom()

Block until

Data from 

client

Process

request

Data (request)

Data (reply)
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User Datagram Protocol (UDP)

• Provides message delivery between processes

– Source port filled in by OS as message is sent

– Destination port identifies UDP delivery queue at endpoint
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UDP checksum

Checksum covers UDP segment and IP pseudoheader

– Fields that change in the network are zeroed out

– Provides an end-to-end delivery check
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Application
process

Application
process

Application
process

IP Packets arrive

Ports

Message
Queues

DeMux

UDP Delivery

Kernel
boundary
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Transmission Control Protocol (TCP)

• Reliable bi-directional bytestream between processes

– Message boundaries are not preserved

• Connections

– Conversation between endpoints with beginning and end

• Flow control (later)

– Prevents sender from over-running receiver buffers

• Congestion control (later)

– Prevents sender from over-running network buffers
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TCP Delivery

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …
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The TCP Service Model

Applications using TCP see only the byte stream and 

not the segments sent as separate IP packets
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Four segments, each with 512 bytes 
of data and carried in an IP packet

2048 bytes of data 
delivered to application 
in a single READ call

TCP Header Format

• Ports plus IP addresses identify a connection

djw // CSE 461, Fall 2011

Source Port Destination Port
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TCP Header Format

• Sequence, Ack numbers used for the sliding window

– Congestion control works by controlling the window size

Acknowledgement number

Sequence number
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TCP Header Format

• Flags bits may be SYN / FIN / RST / ACK, URG, and ECE / CWR

Flags

24
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TCP Header Format

• Advertised window is used for flow control

Window size
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Connection Establishment

• Both sender and receiver must be ready before we start 

to transfer the data

– Sender and receiver need to agree on a set of parameters

• e.g., the Maximum Segment Size (MSS)

• This is signaling

– It sets up state at the endpoints

– Compare to “dialing” in the telephone network

• In TCP a Three-Way Handshake is used
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Three-Way Handshake

• Opens both directions for 
transfer

• This can be viewed as two 
two-way handshakes

– improved

Active participant

(client)

Passive participant

(server)
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Some Comments

• We could abbreviate this setup, but it was chosen to be robust, 
especially against delayed duplicates

– Three-way handshake from Tomlinson 1975

• Choice of changing initial sequence numbers (ISNs) minimizes the 
chance of hosts that crash getting confused by a previous 
incarnation of a connection

• With random ISN it “proves” two hosts can communicate

– Weak form of authentication

– “TCP hijacking”
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Connection

Establishment

Three-way handshake protects 

against odd cases:

a) Duplicate CR. Spurious ACK 

does not connect

b) Duplicate CR and DATA. 

Same plus DATA will be 

rejected (wrong ACK).
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a)

b)

X

X

X

TCP State Transitions

30



16

djw // CSE 461, Fall 2011

Again, with States

Active participant
(client)

Passive participant
(server)

+data

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED
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Simultaneous Connect
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Normal case Simultaneous connect
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Connection Teardown

• Orderly release by sender and receiver when done

– Delivers all pending data and “hangs up”

• Cleans up state in sender and receiver

• TCP provides a “symmetric” close

– Each side shuts down independently

• “I won’t be sending any more data”
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Connection Release

• Key problem is to ensure 
reliability while releasing

• Asymmetric release (when one 
side breaks connection) is abrupt 
and may lose data
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X
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Connection Release 

Symmetric release (both sides agree to release) can’t be handled 

solely by the transport layer

– Two-army problem shows pitfall of agreement
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Attack? Attack?

Connection Release

Normal release sequence, 
initiated by transport user 
on Host 1

– DR=Disconnect Request

– Both DRs are ACKed by the 

other side

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011
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TCP Connection Teardown

Web server Web browser

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK

FIN_WAIT_2

TIME_WAIT

CLOSED
CLOSED

…
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The TIME_WAIT State

• We wait 2MSL (two times the maximum segment 

lifetime of 60 seconds) before completing the close

• Why?

– ACK might have been lost and so FIN will be resent

– Could interfere with a subsequent connection
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