
1

CSE 461 – The Transport Layer

The Transport Layer

• Focus

– How do we (reliably) connect processes?

– This is the transport layer

• Topics

– Naming end points

– UDP: unreliable transport

– TCP: reliable transport

• Connection setup / teardown
Physical

Link

Network

Transport

Application

2

2

djw // CSE 461, Fall 2011

The Transport Layer

• Builds on the services of the Network layer

– “TCP/IP”

• Communication between processes running on hosts

– Naming/Addressing

• Guarantees about message delivery make (more) sense

– This is the first layer that is talking “end-to-end”

3

The Layers Below: Network

• Network layer provides:

– A name space for hosts (interfaces)

• IP addresses

– Framing (message boundaries)

• Packets

– “0 or more” delivery semantics

• Packets may be lost

• Packets usually aren’t duplicated by the network

– Byte transmission

• No data types (except in headers)

4

3

The Layers Below: Network

• Network layer imposes:

– Not all hosts are reachable

• NATs

– Packets may arrive out of order

• Routing table updates

– Maximum packet size

• 65,535 bytes, including header (216 – 1)

– IPv6: optionally, up to 4GB

– Variable transmission speeds

• 100’s of bits/sec to 10’s of gigabits/sec

– Variable delays

• 10’s of microseconds to seconds

We want the transport “to work” despite all this.

5

The Layers Below: Link/Physical

• Link layer provides:

– A name space
• MAC addresses

– May, or may not, provide data integrity
• Checks sums (in the general sense of error detection/correction)

– Broadcast/multicast
• Maybe

• Link layer imposes:

– Variable delivery probability
• Wired vs. wireless

– Maximum frame size
• Ethernet: 1500 bytes

– Jumbo: 9K

6

4

Effect on Transport Protocols

• A transport layer packet may traverse many different

kinds of networks

• Functionality:

– Can’t rely on very much from the lower layers

• “Best effort” delivery, hop by hop

• Performance:

– What can the transport layer do about delay?

– What can the transport layer do about throughput?

– Notion of a bottleneck link

• The hop most limiting performance

7

Internet Transport Protocols

• UDP

– Datagram abstraction between processes

– Reliability: Never delivers data that wasn’t sent
• Error detection (data integrity)

• TCP

– Bytestream abstraction between processes

– Reliability: In order, at-most-once delivery
• ARQ with a sliding window

– Connections

– Flow control
• Throttle sender based on receiver’s capabilities

– Congestion control (later!)
• Throttle sender based on network’s capabilities

8

5

djw // CSE 461, Fall 2011

Comparison of TCP/UDP/IP properties

UDP

• Datagram oriented

• Lost packets

• Reordered packets

• Duplicate packets

• Limited size
packets

IP

• Datagram oriented

• Lost packets

• Reordered packets

• Duplicate packets

• Limited size
packets

TCP

• Connection-oriented

• Reliable byte-stream

– In-order delivery

– Single delivery

– Arbitrarily length

• Synchronization

• Flow control

• Congestion control

9

Relation to layers

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Transport layer sends segments in packets (in frames)

Segment

Segment

6

djw // CSE 461, Fall 2011

Naming: IP address + port number

• You know these from the projects…

• How does client determine the name of the receiver?

– IP address: use the DNS name service

• Project 4 is very like DNS; DNS is very like Project 4

• We’ll look at the Internet’s DNS a bit later

– Port: ?

• Project 4 provides a translation from a “well known name” to a port

• DNS does not (mostly)

11

djw // CSE 461, Fall 2011

Determining Internet Port Numbers

• Servers typically bind to well-known port numbers

– Ports below 1024 reserved for well-known services

• look in /etc/services

• Clients use OS-assigned temporary (ephemeral) ports

– Above 1024, recycled by OS when client finished
• (Some clients try to bind to a particular ephemeral port, to act well-known within some restricted

community.)

12

7

Some well-known (TCP) ports

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Is there a mechanism to verify you’ve connected to what you intended? No.

Can a well-known server use a non-standard port? Yes.

What’s the security provided by using a non-standard port? None.

What’s the benefit of using a non-standard port? Minimal.

Why are there well-known ports, again?

TCP Socket Interface (connection-oriented)

Server

Socket()

Bind()

Accept()

Recv()

Recv()

Client

Socket()

Listen()

Send()

Connect()

Send()

Block until

connect

Block until

data

Connection Establishment.

Data (request)

Data (reply)

14

Java wraps these together

Block until

data

8

UDP Socket Interface (connectionless)

Server

Socket()

Bind()
Client

Socket()

Recvfrom()

Sendto()

Bind()

Sendto()

Recvfrom()

Block until

Data from

client

Process

request

Data (request)

Data (reply)

15

User Datagram Protocol (UDP)

• Provides message delivery between processes

– Source port filled in by OS as message is sent

– Destination port identifies UDP delivery queue at endpoint

16

9

UDP checksum

Checksum covers UDP segment and IP pseudoheader

– Fields that change in the network are zeroed out

– Provides an end-to-end delivery check

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Application
process

Application
process

Application
process

IP Packets arrive

Ports

Message
Queues

DeMux

UDP Delivery

Kernel
boundary

18

10

djw // CSE 461, Fall 2011

Transmission Control Protocol (TCP)

• Reliable bi-directional bytestream between processes

– Message boundaries are not preserved

• Connections

– Conversation between endpoints with beginning and end

• Flow control (later)

– Prevents sender from over-running receiver buffers

• Congestion control (later)

– Prevents sender from over-running network buffers

19

djw // CSE 461, Fall 2011

TCP Delivery

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …

20

11

The TCP Service Model

Applications using TCP see only the byte stream and

not the segments sent as separate IP packets

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Four segments, each with 512 bytes
of data and carried in an IP packet

2048 bytes of data
delivered to application
in a single READ call

TCP Header Format

• Ports plus IP addresses identify a connection

djw // CSE 461, Fall 2011

Source Port Destination Port

22

12

djw // CSE 461, Fall 2011

TCP Header Format

• Sequence, Ack numbers used for the sliding window

– Congestion control works by controlling the window size

Acknowledgement number

Sequence number

23

TCP Header Format

• Flags bits may be SYN / FIN / RST / ACK, URG, and ECE / CWR

Flags

24

13

TCP Header Format

• Advertised window is used for flow control

Window size

25

Connection Establishment

• Both sender and receiver must be ready before we start

to transfer the data

– Sender and receiver need to agree on a set of parameters

• e.g., the Maximum Segment Size (MSS)

• This is signaling

– It sets up state at the endpoints

– Compare to “dialing” in the telephone network

• In TCP a Three-Way Handshake is used

26

14

Three-Way Handshake

• Opens both directions for
transfer

• This can be viewed as two
two-way handshakes

– improved

Active participant

(client)

Passive participant

(server)

27

Some Comments

• We could abbreviate this setup, but it was chosen to be robust,
especially against delayed duplicates

– Three-way handshake from Tomlinson 1975

• Choice of changing initial sequence numbers (ISNs) minimizes the
chance of hosts that crash getting confused by a previous
incarnation of a connection

• With random ISN it “proves” two hosts can communicate

– Weak form of authentication

– “TCP hijacking”

28

15

Connection

Establishment

Three-way handshake protects

against odd cases:

a) Duplicate CR. Spurious ACK

does not connect

b) Duplicate CR and DATA.

Same plus DATA will be

rejected (wrong ACK).

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

a)

b)

X

X

X

TCP State Transitions

30

16

djw // CSE 461, Fall 2011

Again, with States

Active participant
(client)

Passive participant
(server)

+data

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

31

Simultaneous Connect

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Normal case Simultaneous connect

17

Connection Teardown

• Orderly release by sender and receiver when done

– Delivers all pending data and “hangs up”

• Cleans up state in sender and receiver

• TCP provides a “symmetric” close

– Each side shuts down independently

• “I won’t be sending any more data”

33

Connection Release

• Key problem is to ensure
reliability while releasing

• Asymmetric release (when one
side breaks connection) is abrupt
and may lose data

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

X

18

Connection Release

Symmetric release (both sides agree to release) can’t be handled

solely by the transport layer

– Two-army problem shows pitfall of agreement

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Attack? Attack?

Connection Release

Normal release sequence,
initiated by transport user
on Host 1

– DR=Disconnect Request

– Both DRs are ACKed by the

other side

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

19

TCP Connection Teardown

Web server Web browser

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK

FIN_WAIT_2

TIME_WAIT

CLOSED
CLOSED

…

37

The TIME_WAIT State

• We wait 2MSL (two times the maximum segment

lifetime of 60 seconds) before completing the close

• Why?

– ACK might have been lost and so FIN will be resent

– Could interfere with a subsequent connection

38

