
1

CSE 461 – Routing

Routing

• Focus: 

– How to find and set up paths through a network

• Distance-vector and link-state

• Shortest path routing

• Key properties of schemes 

Physical

Link

Network

Transport

Application

2



2

Forwarding / Routing

• Fowarding

– Router determines the next hop of an incoming packet based on 

something in the packet (e.g., destination address)

– Based on table lookup in a routing table

– This scheme says all packets from a src to a dest follow the same path

• Routing

– Routers engage in a distributed protocol to 

• Exchange information

• Establish their own routing table

– Primary goal: loop free routes

– Secondary goal: efficient routes

– This scheme says packets from a src to a dest may follow distinct paths

3

Routing

• Loop-freeness motivates using trees 

– In general, we can deal with paths obeying some monotonicity property

• The next hop destination is “better” than the source by some measure

• We’ve seen distributed tree construction

– Learning bridge spanning tree algorithm

• What’s different now?

– Link layer vs. network layer

– Single, arbirtrary root vs. every destination is a root

– Foolproof vs. managed

4



3

To find trees – two routing methods

• Distance-vector and Link-state

• Distance-vector method:

– Every router collects information about its neighbors’ connectivity to 

every destination

• I don’t need to know the entire path, just who to forward to

• Link-state method: 

– Every router collects information about 1-hop connectivity of every 

other router

• The union is the network graph

• Every router knows the graph…

5

Distance Vector Algorithm

• Each router maintains:

– A vector of costs to all destinations

– A routing table giving next hops

– Information about one-hop costs to each neighbor

• With that, run a distributed Bellman-Ford (learning bridge-like) 

shortest path spanning tree algorithm

– Periodically send copy of distance vector to neighbors

– On reception of a vector, if your neighbor’s path to a destination plus cost to that 

neighbor cost is better

– Update the cost and next-hop in your outgoing vectors

• Assuming no changes, will converge to a set of routing tables that 

represent short-path trees

6



4

DV Example

• Consider the activity at node J

7

Are We Done?

• Problems

– Does it scale?

• Forwarding table sizes grow with number of destinations

– This isn’t peculiar to DV, though…

– Does it work?

• This is another form of scaling issue

• To work, has to converge (much) faster than things change

• The rate of change in the network is proportional to the scale 

of the network

8



5

DV problem – convergence dynamics

• Consider knowledge of cost to reach A at other nodes

X

“Count to infinity scenario”Desired convergence

9

DV problem -- dynamics

• Good news (better routes) propagates quickly

• Bad news (failures) propagates slowly 

– inferred by exploration

• Leads to “count to infinity” loops

– Many heuristics (split horizon, poison reverse)

– Takes ordered updates to eliminate (e.g., EIGRP uses diffusing 

computations) that are complicated and slow convergence

– No great solutions

• No longer widely used except for resource constrained 

or legacy networks.

10



6

Routing Information Protocol (RIP)

• DV protocol with hop count as metric
– Infinity value is 16 hops; limits network size

– Includes split horizon with poison reverse

• Routers send vectors every 30 seconds
– With triggered updates for link failures

– Time-out in 180 seconds to detect failures

• RIPv1 specified in RFC1058
– www.ietf.org/rfc/rfc1058.txt

• RIPv2 (adds authentication etc.) in RFC1388
– www.ietf.org/rfc/rfc1388.txt

11

Routing Algorithm #2: Link State Routing

• Same assumptions/goals, but different approach than DV:

– All routers learn the full network topology (!)

– Each compute shortest path spanning trees

• They should all agree…

• Two phases:

1. Topology dissemination (flooding)

2. Shortest-path calculation (Dijkstra’s algorithm)

• Why?
– In DV, routers don’t know anything about full paths

• E.g., no information about what next hop router will do with your packet

– LS uses global information

• Faster convergence and hopefully better stability

12



7

LS example database

• Q: what is the flooding rule to build the database?

• Q: how are shortest paths computed from the database?

13

Shortest Paths: Dijkstra’s Algorithm

• Graph algorithm for single-source shortest path (i.e., 

sink tree)

S � {}

Q � <all nodes keyed by distance>

While Q != {}

u � extract-min(Q)

S � S plus {u}

for each node v adjacent to u

“relax” the cost of v

�u is done, 

add to shortest 

paths 

14

Among the currently unconnected nodes, add to the

partial tree the node that is closest to the root



8

Dijkstra Example – Step 1

10

2 3

5

2

1

4 6

7

9
0

15

Dijkstra Example – Step 2

10

2 3

5

2

1

4 6

7

9
0

5

10

16



9

Dijkstra Example – Step 3

8

2 3

5

2

1

4 6

7

9
0

5 7

14

17

Dijkstra Example – Step 4

8

2 3

5

2

1

4 6

7

9
0

5 7

13

18



10

Dijkstra Example – Step 5

8

2 3

5

2

1

4 6

7

9
0

5 7

9

19djw // CSE 461, Autumn 2011

Dijkstra Example – Done

8

2 3

5

2

1

4 6

7

9
0

5 7

9

20djw // CSE 461, Autumn 2011



11

Open Shortest Path First (OSPF)

• Widely-used Link State protocol today; see also ISIS

• Basic link state algorithms plus many features:

– Load balancing: multiple equal cost routes

– Extra hierarchy: partition into routing areas

– Authentication of routing messages

djw // CSE 461, Autumn 2011 21

Routing – desirable properties

• Correctness

• Network efficiency 

• Network fairness

• Rapid convergence

– To correct routes that are stable after changes, with minimal 

transient loss

• Scalability

– Of messages and router state

– Particularly an issue for large, mobile, or multicast networks 

22



12

Comparison

Property Distance Vector Link State

Correctness Yes - Distributed Bellman Ford Yes - Replicated shortest path

Efficiency Approx- Least cost paths Approx - Least cost paths

Fairness Approx - Least cost paths Approx - Least cost paths

Convergence Slow – many exchanges Fast – prop plus compute

Scalability Good – O(1) per node/link Moderate – at least O(edges)

23

• From fast (very reactive) to slow (carefully planned)

– Use of different timescales largely decouples mechanisms

• Congestion control

– Adapts to packet loss; slows source

• Routing

– Adapts to failures; finds paths with connectivity

• Traffic engineering

– Route adjustments for cost/performance (e.g., weights)

• Provisioning

– Build out network to match traffic workload

Resource allocation timescales today

24



13

Routing Implications

• The network may have physical connectivity, but be partitioned at 

the IP layer

• The path from A to B is likely different than the path from B to A

– Routers seeing packets sent from host A to host B may not see the ACKs from 
B to A

• Host A can’t reach host C, but A can reach B and B can reach C

• We still don’t have a scheme that scales to Internet size

25


