## Bridging

Bridging makes networks:

- Bigger
- Smaller
(and it's not a multiple choice question)


## Bridges, Spanning Trees \& Switches

- Focus:
- What to do when one shared LAN isn't big enough?
- Interconnecting LANs
- Hubs
- LAN bridges/switches
- A preview of the Network layer

| Application |
| :---: |
| Presentation |
| Session |
| Transport |
| Network |
| Data Link |
| Physical |

## Warning: confusing terminology / pictures

```
        Original Ethernet(repeater)
```



Modern Ethernet (Hub)

Multi-port "repeaters" Hubs


## That is not all....



## Why do we need a bridge/switch?

- One shared LAN can limit us in terms of:
- Distance (why?)
- Number of nodes (why?)
- How do we scale to a larger, more efficient networks?
- We must be able to interconnect LANs


## Bridges

- Connected to different LANs over ports
- Operate in "promiscuous mode"
- receives packet on one port and forwards it to the outgoing port
- Example. From A to D
- is "never" a communication endpoint itself
- What should each bridge do with an incoming frame?



## Bridges: What to do with incoming frame



## How are bridges configured?

- Backward learning algorithm

1. At first, bridge doesn't know where any address is. Send incoming frame "everywhere"
2. But, the incoming frame carries a source address. Remember it.
3. If an incoming frame has a destination address l've remembered, send it only there

- Once we learn the ports, can we stop the backward learning algorithm?


## Learning Bridges

Bridges extend the Link layer:

- Use but don' t remove Ethernet header/addresses
- Don't inspect higher layer headers
- May need to store the packet



## Adding (Un)Reliability

Redundant links


## Okay, just don't do that...

## Spanning Tree Algorithm

- Goal: prevent forwarding loops, even when there are physical loops, by having only a single bridge responsible for each LAN segment
- "turn off" many bridge ports
- Do this dynamically
- Results in a spanning tree for packet routing
- Robust against failures, needs no organization



## Algorithm Overview

1. Elect a root node for the tree

- Remember that all bridges are doing this at once, and none know what the network topology is

2. Grow tree as shortest distances from the root

- Remember that all bridges...

3. Add some details to actually make it work (!)


## Algorithm continued

- Each bridge sends periodic messages to others containing:
- [ its address,
address of the bridge it believes is the root, distance (in hops) to root ]
- A bridge receiving a message may update its view of the "best" bridge on the LAN segment it received it from
- First criterion: Smaller root address is preferred
- Second criterion: Smaller distance to root is pre
- Tie breaker: bridge with smaller address is better


## Algorithm continued

- Initial condition: each bridge thinks it is the root
- Sends configuration messages on all ports
- [ I'm me,
the root is me,
I'm at distance 0 from the root ]
- Later, bridges send only "best" configs
- Add 1 to distance, send configs on segments where it’s still "best" (designated bridge)
- Turn off forwarding on ports except those that send/receive "best"


## Spanning Tree Example: Final Tree



## Spanning Tree Example: Transients



## General Design Principles

- All bridges to run the same algorithm
- All bridges start with zero information and operate in parallel
- Bridges send periodic messages about their own state
- State that hasn' t been refreshed in a while is deleted (soft state)
- The algorithm converges to a globally consistent state
- If we all have the same inputs and have implemented it correctly and the inputs aren't changing too faster than we can converge


## LAN Switches - what is used today

- LAN switches are multi-port bridges
- Modern, high performance form of bridged LANs
- Frames are switched, not shared like hubs
- Every host on a separate port, can combine switches


Ethernet Switch

## Virtual LANs

VLANs (Virtual LANs) split one physical LAN into multiple logical LANs, for management reasons

- Ports are "colored" according to their VLAN



## Virtual LANs -- IEEE 802.1Q

802.1Q frames carry a color tag (VLAN identifier)

- Length/Type value is $0 \times 8100$ for VLAN protocol



## VLAN Breaking News

The CSE wireless network used to be supported by CSE owned APs.

UW-IT has replaced our APs with theirs.

We'll still run an isolated CSE wireless network, and they'll run an isolated UW wireless network, both on their APs.

VLANs...

## Perspective on Bridges/Switches

- LAN switches form an effective small-scale network
- Designed to work transparently with no host changes
- Plug and play for real!
- But they don't scale well to large networks
- Little control over forwarding paths
- Size of bridge forwarding tables grows with number of hosts
- Broadcast traffic flows freely over whole extended LAN
- Spanning tree algorithm limits reconfiguration speed
- We can layer on scalability by changing hosts too.
- Next up: IP and routing.

