
1

CSE/EE 461: Introduction to Computer

Communications Networks

Autumn 2007

Module 1

Course Introduction

John Zahorjan

zahorjan@cs.washington.edu

534 Allen Center

9/26/2007 CSE/EE 461 07au 2

CSE Mentors Needed!

• We need (more) mentors for new CSE majors!

– (You were new once upon a time – now’s your chance to

return the favor)

• Welcome night event is tomorrow 5-7 pm

– Food provided! (This is “the bribe”)

• Sign up by this afternoon (Wednesday)

– Reply to message sent to your CSE email account, or send

email to ugrad-advisor@cs

2

9/26/2007 CSE/EE 461 07au 3

Disability Resources for Students (DRS) is looking for a notetaker for
this class to assist a student who is unable to take complete class notes
because of the effects of a disability. They have asked me to make an
announcement to request volunteers, as a notetaker has not yet been
found.

At least two notetakers are needed; a primary who would be able to copy
his/her notes once a week, and an alternate who would be on standby as
a back-up notetaker. The time commitment is minimal, but the
difference it makes for the student is significant.

DSS pays for the photocopying and will provide a letter of
recommendation for your volunteer hours.

If you are interested in volunteering, or if you have any questions, please
contact DRS for more information. They are located in Schmitz Hall,
room 448. You may call DRS at 543-8924 or email them at
uwdss@u.washington.edu.

Thank you for your consideration.

9/26/2007 CSE/EE 461 07au 4

Today’s agenda

• Course Administration

– course overview

• course staff

• general structure

• the text

• policies

• Introduction to Course Content

3

9/26/2007 CSE/EE 461 07au 5

Course admin

• Everything you need to know will be on the course web

page:

http://www.cs.washington.edu/461/

• Most everything (lecture schedule, reading,

assignments, section materials, …) is linked off the
schedule

• Quick overview now…

9/26/2007 CSE/EE 461 07au 6

• Who:

• John Zahorjan

• Ram Sivakumar

• Brian Steadman

• What:

– we’re all just people

• people learn in different ways – help is available in different ways

– class reading materials

» it’s easy to find lots more online

– assignments/exams are a kind of help

– person-to-person to person dialog is valuable (to both sides)

» questions in class/sections

» office hours / appointments

» email

• questions in class/sections are more than welcome

Course staff

4

9/26/2007 CSE/EE 461 07au 7

• Communication is more important than smarts for

many applications

• Our primary goal is to understand how today’s

networks are built

• This involves a mixture of:

– science: Is there an algorithm that meets some goal?

– engineering: How cost effective are various alternatives

likely to be?

– experience: what has worked, what hasn’t, and why?

– measurement: are current networks working as intended?

how are people using them?

Course goals

9/26/2007 CSE/EE 461 07au 8

• What is likely to be of lasting value to you?
– Specific information: Many (most? all?) real applications

involve networks.

– General lesson: engineering a large, dynamic system

• The hope, as always, is make all minutes you spend
on the course worth your while
– We won’t be doing the substantial, multi-part project usually

associated with this course

• Instead:
– reading text, answering questions from text, taking exams

– reading additional important papers, writing short analyses of
them

– Still some programming…

Course goals (cont.)

5

9/26/2007 CSE/EE 461 07au 9

– the text

• Peterson & Davie, Computer networks: a systems approach

(4th edition)

– other resources

• many online; some of them are required reading

– Policies

• email

• late policy

• grading

• collaboration vs. cheating

Last bit of course admin

9/26/2007 CSE/EE 461 07au 10

Introduction to Networking

• Understanding networking involves thinking in a way you’re almost
certainly not accustomed to

– networks are distributed:
• concurrent: there is more than one program/computer involved

• possibly strange failure semantics
– sure, part of the “application” can crash and others stay up, but…

– part can operate incorrectly, or

– part can go down and come back up while app is running…

– network implementations are deeply layered:
• not just 2 levels (process/kernel)

– it can get confusing what is happening at each level, and why

• actual implementations favor function and efficiency over blind respect for layering

– networks can have immense scale and heterogeneity
• our most prominent network, the Internet, is so large and dynamic, and operated

by so many distinct, entities that no one knows just exactly what it looks like, how
it’s being used, or how well it’s working

– networks must work correctly
• is “five nine’s” (99.999%) correctness enough?

6

9/26/2007 CSE/EE 461 07au 11

Today

• Two examples, with the goal of helping us starting

thinking “in a network way”

• First, a familiar example that shows us that what

networks do is actually pretty simple

• Second, an unfamiliar example that shows that
seemingly simple problems can be knotty in this

arena

9/26/2007 CSE/EE 461 07au 12

The Familiar Example

• Suppose you’ve amassed a 1TB (1024 GB) collection

of “home movies” and you want to communicate a
copy of them to a friend living in Walla Walla

• Q: What networking technology should you use?

– A: A couple 500GB disks and the US Postal System

• This is not a joke…

7

9/26/2007 CSE/EE 461 07au 13

$260$2,600522 days24 hrs19 hrs1,4001,0007DiskBrick

$3,100$31,000185 days24 hrs92 hrs10002x15,00025Tape

$2,000$20,000286 days24 hrs60 hrs4002x8000200DVD

$208$2,080286 days24 hrs60 hrs2402x8001500CD

$/TB

shipped

Cost

(10 TB)Mbps

TotalTime

/TB

ship

time

TB read +

write timeMedia$Robot$Media

Table 3: The relative cost of sneaker-net, using various media. The analysis assumes 6MBps tape, 10MBps CD/DVD and robots at each
end to handle the media. Note that the price of media is less than the fixed robot cost.

TeraScale SneakerNet: Using Inexpensive Disks for Backup, Archiving, and Data Exchange.

Jim Gray, Wyman Chong, Tom Barclay, Alex Szalay, Jan Vandenberg

May 2002, Technical Report, MS-TR-02-54

Context

Speed

Mbps

Rent

$/month

Raw

$/Mbps

Raw

$/TB

sent

Time/TB

days

home phone 0.04 40 1,000 3,086 6 years

home DSL 0.6 70 117 360 5 months

T1 1.5 1,200 800 2,469 2 months

T3 43 28,000 651 2,010 2 days

OC3 155 49,000 316 976 14 hours

100 Mpbs 100 1 day

Gbps 1000 2.2 hours

OC192 9600 1,920,000 200 617 14 minutes

Table 2: The raw price of bandwidth, the true price is more than twice this when staff, router, and support costs are included. Raw
prices are higher in some parts of the world.

9/26/2007 CSE/EE 461 07au 14

“Storage Brick”

Huh? Why not just send the disks?

“We began sending raw disks to one another, but that
has the nasty problem that disks do not plug right into
the network. So the recipient had to have exactly the
right kind of disk reader (an ATA path that could read
an NTFS file system with an SQL database). At a
minimum, this excludes our Macintosh, Solaris, MVS,
and Linux colleagues. Even within the select group that
can read our favored disk format, we had many
problems about master-slave settings on the ATA bus,
about recognizing dynamic disks, and innumerable other
details. So, sending magnetic disks around is
problematic.”

8

9/26/2007 CSE/EE 461 07au 15

Back to the Example: USPS as a Network

• There is a client at each end of the connection

• USPS itself is a networking service

• The service exports an API that tells clients how to

use it:

– To send:

• wrap your data in an envelope

• put an address on the envelope in a format that we (USPS)

dictate

• enter your packet into our system

– To receive:

• check your mailbox every so often

• remove the envelope from whatever you find

• voila, the data that was sent to you

9/26/2007 CSE/EE 461 07au 16

USPS

9

9/26/2007 CSE/EE 461 07au 17

How does the USPS network work?
• To be honest, I have almost no idea.

• Fortunately, for our purposes it doesn’t matter – it’s enough that our hypothetical explanation is

plausible and could work

1. All mail deposited into a mail box, no matter what its final destination, is first

encapsulated in a new container (a mail truck) and routed to a local sorting facility.

2. The mail is unencapsulated (taken out of the truck). The destination address is

examined, and it is re-encapsulated in a new container (e.g., mail headed to zip codes

993** is placed in a bag)

3. The bag of mail is un- and then re-encapsulated a number of times as it is transported
over different physical media – a truck to Boeing Field, then an airplane to SFO, a

truck to a sorting facility there, a truck back to SFO, a plane to Walla Walla, a truck to

sorting facility there, a jeep/mailbag on the delivery route. At each stop, a decision is

made about where to send it next.

4. As it nears its final destination, routing is based on its actual street address. It’s
eventually stuffed into the mailbox for your friend’s address.

5. Your friend’s roommates don’t open it because part of the address includes his name.

(Note that his name portion of the address was irrelevant up to this point.)

This is a lot like (but not exactly like) what happens in the Internet

9/26/2007 CSE/EE 461 07au 18

The Internet

10

9/26/2007 CSE/EE 461 07au 19

Parallels to the Internet

• Division of responsibilities/capabilities intersecting at an API

– At the highest level, you don’t much care how USPS delivers your mail, all
you care about is the API. (We’ll look at what the API is in just a moment.)

– Similarly, USPS doesn’t care or know what your data is.

– Moreover, you don’t really have much control over how USPS delivers your
mail.

• Delivery involves a number of hops, with routing decisions made at
each.

• A number of different physical media (trucks, planes, feet) are used,
with the lowest capacity media typically found near the sender and the
destination and the fastest media in the middle (of the route).

• Addresses are places, not people
– 1600 Pennsylvania Avenue NW, Washington, DC 20500

not
George W. Bush

– Why? Why do we care?

9/26/2007 CSE/EE 461 07au 20

Parallels to the Internet (cont.)

• There is a loose hierarchy involved in choosing a delivery route – more
precise location information is needed as the mail gets closer to its
destination.

• Correspondingly, the useful part of the address changes at various
stages of delivery, for example:
– None of it is relevant in the first step (truck to local sorting facility)
– The first three digits of the zip are relevant through a lot of the middle

stages
– The full street address is important in the second last stage
– “Joe Smith” is relevant (only) once it has been delivered to the destination

mailbox

• There is a maximum allowed size – if you want to send more than that,
put whatever it is in multiple boxes, each not too big

• If it’s Christmas, expect more problems than usual
– The system capacity is set to give good performance most of the time, but

can suffer during periods of unusual load

11

9/26/2007 CSE/EE 461 07au 21

Parallels to the Internet (cont.)

• USPS is able to make use of new delivery technologies as they

arise, without altering its API

Missle Mail

Throughout its history, the Postal Service enthusiastically has explored faster,

more efficient forms of mail transportation. Technologies now commonplace -

- railroads, automobiles, and airplanes -- were embraced by the Post Office

Department at their radical birth, when they were considered new-fangled,

unworkable contraptions by many. One such technology, however, remains

only a footnote in the history of mail delivery. On June 8, 1959, in a move a
postal official heralded as "of historic significance to the peoples of the entire

world," the Navy submarine U.S.S. Barbero fired a guided missile carrying

3,000 letters at the Naval Auxiliary Air Station in Mayport, Florida. "Before

man reaches the moon," the official was quoted as saying, "mail will be

delivered within hours from New York to California, to Britain, to India or

Australia by guided missiles."

History proved differently, but this experiment with missile mail exemplifies

the pioneering spirit of the Post Office Department when it came to

developing faster, better ways of moving the mail.

Missile Mail Launch, 1959

copied without permission from http://www.usps.com/history/his2_75.htm

9/26/2007 CSE/EE 461 07au 22

One Last Parallel

• 1963: USPS rolls out zip codes

– 5 digits => 100,000 different zips, that’s plenty

• 1983: USPS rolls out zip+4

– 9 digits => 1,000,000,000 different zips; this time we mean it

• early 1970’s: IP developed

– 32-bit address fields => 4 billion distinct addresses, that’s plenty

• circa 1995: IPv6 standarized

– 128-bit address fields => about 1038 distinct addresses (about 1024

per square meter of the earth)

• (circa 2007: IPv6 still not widely adopted)

12

9/26/2007 CSE/EE 461 07au 23

The USPS API
• We know how to send/receive mail. But what are the semantics of

those operations (i.e., what properties are guaranteed)?

– Reliability?
• Is everything sent eventually received?

• Is it received by the person named in the address?

– Failure notification?
• Does USPS let me know if it got there or not?

– Integrity?
• If it arrives, are the contents undamaged? (Does it arrive only once?)

– Latency (delay)
• Is there a guaranteed upper bound? How much does it vary from one letter to the

next?

– Ordering?
• If I send a letter a day to a single destination address, do they arrive in the order I

sent them?

– Security?
• Is anyone reading your mail in transit?

• Can you be sure who sent the mail?

• Can you avoid having so much junk mail sent to you that there’s no room for the
mail you want?

9/26/2007 CSE/EE 461 07au 24

USPS as Engineering

• Want the service to be widely useful

– Has to accommodate lots of different client “decisions”

• Most anything as an envelope (not a USPS designed one)

• Any old handwriting (not printed in some specific font)

• Contents of envelope are irrelevant to its delivery

– Has to be “scalable” – able to deliver mail from any and to any of an
ever increasing number of addresses

– Has to be cheap enough that people will use it

• So, has to be cheap to provide

• To be cheap, the API provides almost no guarantees

– It’ll probably get there, it’ll probably take around a week, and it’ll
probably not be damaged

– We can’t tell you who sent it or how it got there or if the check is
actually in the mail

– We can’t guarantee the carrier won’t read your postcard

13

9/26/2007 CSE/EE 461 07au 25

USPS Engineering Decisions

• This may sound as though the design is “the cheapest thing to
implement possible.” It’s not.

– “Once a day, everyone take mail you find in your mailbox that’s not for you
and put it in the next mailbox to the right…”

• Hopefully, it’s an appropriate tradeoff:

– to be any cheaper, some property would have to get a lot worse (e.g.,
delivery times in months, not days)

– to provide any stronger properties (e.g., we can verify who the sender was)
it would have to get a lot more expensive

– the properties it does provide are good enough in practice for lots of uses

• A desirable feature: if in some cases it’s worth it to the sender to have
stronger properties, those properties can be built on top of the generic
service at additional expense

– If you want to know when the mail you sent arrives, phone the person you
sent it to daily

– if you don’t want the postman reading your postcards, put them in
envelopes

9/26/2007 CSE/EE 461 07au 26

Moral of First Example

• What the Internet is doing isn’t really all that

complicated

• The fact that it isn’t all that complicated is a stunning

engineering accomplishment

– Not that it could be built, but that they decided to build it this

way

• If the pieces of the Internet architecture get a bit
confusing, think about USPS – it’s a pretty good

analogy

14

9/26/2007 CSE/EE 461 07au 27

A Second Example

• Suppose you want to build chat room software

• You want all messages typed by all participants to show up on
everyone’s screen in the same order

• Division of responsibilities:

– Your software: most everything, except for…

– Multicast

• a single send(m) call causes message m to be delivered to multiple
destinations

forever {

read network message;

print network message;

}

forever {

read local user’s input;

multicast user input;

}

9/26/2007 CSE/EE 461 07au 28

The Chat Room Application

chat
app

network

sw

client 0

m-send(m) deliver(m)

1

23

chat
app

network

sw

chat
app

network

sw

chat
app

network

sw

net-send()

receive()

15

9/26/2007 CSE/EE 461 07au 29

Reliable, Totally Ordered Multicast

• multicast: a single send(m) call causes message m to be

delivered to multiple destinations

• totally ordered: roughly, there is a unique sorted order to the

messages (less roughly, the ordering is determined by an

antisymmetric, transitive, and total relation)

• reliable: if a correctly operating client displays message m

before displaying message m’, then any other correctly

operating client that displays m’ will first display m

• (Also want liveness: all messages are eventually displayed)

9/26/2007 CSE/EE 461 07au 30

First Try: The Straightforward Implementation

• When m-send(m) is invoked, immediately send it to

each client (including yourself):

• When a message m is received from the network,

hand it up to the app (to display):

• What can (will) go wrong?

foreach client c {

net-send(c,m);

}

deliver(m);

16

9/26/2007 CSE/EE 461 07au 31

Second Try
• Assume net-send() is reliable, and that no client crashes or has bugs

• On m-send(m) :

• When a message (m,t) is received from client s:

• This sort of works

– What assumption about what net-send() guarantees is it making?

– What other assumption is it making?

– Why isn’t it an acceptable solution in practice?

t = localClockTime();

foreach client c {

net-send(c,m,t);

}

put (m,t) in a sorted queue;

while (there is a message in the queue from each client) {

deliver(the message with the lowest timestamp);

remove the delivered message from the queue;

}

9/26/2007 CSE/EE 461 07au 32

Last Try: Lamport clocks
• First, we need to define Lamport clocks…

• Each client has its own Lamport clock, with
monotonically increasing timestamp tc

• Every event is tagged with its timestamp
– For us, events are m-send() invocations and message

receptions

• When a local event occurs (m-send(m) is invoked):
– tc = tc + 1

• When a message with timestamp ts is received:
– tc = max(tc, ts) + 1

17

9/26/2007 CSE/EE 461 07au 33

Last Try: Implementation

• On m-send(m) at client s:

• When (m,ts) is received at c:

ts = ts + 1;

foreach client c {
net-send(c,m,ts);

}

tc = max(tc, ts) + 1;

// broadcast an acknowledgement of m to everyone else

if (the message received is not itself an ACK) {

foreach client q {

net-send(q,ACK(m),tc);

}
}

put (m,ts) in a sorted queue;

while (the first non-ACK message in the queue has been ACK’ed by all clients) {

deliver(that first non-ACK message);
remove that message and its ACKs from the queue;

}

9/26/2007 CSE/EE 461 07au 34

For next time

• Assignment 1 is out (linked from syllabus page)
– Try out some useful, standard tools

– Some relatively simple Java programming

– Read a key paper, think about it, and write two paragraphs

– Due a week from now

• Sections tomorrow intended to help with the
programming portion

• For next class, please have read Chapter 1

• We’ll return to a (more standard) overview of
networks

