
1

CSE/EE 461: Introduction to Computer

Communications Networks

Autumn 2007

Module 1.5

Introduction – Reliable Multicast

John Zahorjan

zahorjan@cs.washington.edu

534 Allen Center

10/1/2007 CSE/EE 461 07au 2

A Second Example

• Suppose you want to build chat room software

• You want all messages typed by all participants to show up on
everyone’s screen in the same order

• Division of responsibilities:

– Your software: most everything, except for…

– Multicast

• a single send(m) call causes message m to be delivered to multiple
destinations

2

10/1/2007 CSE/EE 461 07au 3

The Chat Room Application

m-send(m)

ch
at

ap
p

M
ul

ti
ca

st

deliver(m)

ch
at

app

M
cast

deliver(m)

ch
at

app

M
cast
“Network
Hardware”

“Network
Hardware”

“The Network” (as seen by the chat app)

forever {

when user input {

m-send(m);

}

}
forever {

when deliver(m) {

print m;
}

}

10/1/2007 CSE/EE 461 07au 4

When Will That Implementation Work?

• Reliable, Totally Ordered Multicast (RTOM)

– multicast: a single send(m) call causes message m to be delivered

to multiple destinations

– totally ordered: roughly, there is a unique sorted order to the

messages (less roughly, the ordering is determined by an

antisymmetric, transitive, and total relation)

– reliable: if a correctly operating client displays message m before

displaying message m’, then any other correctly operating client

that displays m’ will first display m

– (Also want liveness: all messages are eventually displayed)

3

10/1/2007 CSE/EE 461 07au 5

Implementing RTOM

• RTOM has its own view of what the network is

– The interface provided by lower layer networking software

and/or hardware

• Assumed properties of that interface (RPO):

– Reliability Assumption: Reliable

• If A does a net-send(m,B), B will eventually receive m

– Note: The delivery delay is finite but unpredictable

– Ordering Assumption: Pair-wise ordered

• If A does net-send(m,B) and later net-send(m’,B), m will be

deliver()’ed to B before m’

– Note: this property holds only “pairwise.” If A does net-send(m,B)
then net-send(m’,C), there is no guarantee about the order of
delivery of m and m’

10/1/2007 CSE/EE 461 07au 6

The Chat Room Application

m-send(m)

ch
at

ap
p

R
PO

net-send()

R
T
O

M

deliver(m)receive()

ch
at

app

R
PO

R
T
O

M

deliver(m)receive()

ch
at

app

R
PO

R
T
O

M

“Network
Hardware”

“Network
Hardware”

“The Network” (as seen by RTOM)

4

10/1/2007 CSE/EE 461 07au 7

Why Is This Not Trivial?

• Unpredictable delays in the network is enough

t0 : N0 sends; N1,N2 receive

t1 : N1 sends; all receive

t2: N3 receives N0’s message

N0

N1 N3

N2
t0

t1

t2

10/1/2007 CSE/EE 461 07au 8

Basic Idea of Solution

• Sort messages you’ve received, by time sent

– Why time sent, rather than received?

• Need the results of sorting to be the same on all nodes

• Display message only when you’re sure there is no

earlier message still on its way to you

– RPO says that if you’ve seen a message from p sent at time

t, there can’t be a message from p sent before t still in the

network

– Make all nodes “acknowledge” each message, so that we

have a constant supply of new info from each other node

5

10/1/2007 CSE/EE 461 07au 9

Basic Idea In A Picture

N0

N1

N2
t0

t1

t2

•Unless t1 > t0 and t2 > t0, can’t display N0’s message (yet)

•Suppose t2 < t0. N2 might still send a message at some time before t0.

•Therefore, can’t use local time of send for these times, because of clock skew and drift

I know there can’t be a
message from N0 before

t0, and can’t be a
message from N2 before
t2. So, as long as t2 > t0,
I can safely display N0’s

message now.

10/1/2007 CSE/EE 461 07au 10

Lamport clocks

• Each client has its own Lamport clock, with
monotonically increasing timestamp tc

• Every event is tagged with its timestamp
– For us, events are m-send() invocations and message

receptions

• When a local event occurs on node c (m-send(m) is
invoked):
– tc = tc + 1

• When a message with timestamp ts is received at c:
– tc = max(tc, ts) + 1

6

10/1/2007 CSE/EE 461 07au 11

Finally, the Implementation

• On m-send(m) at client s:

• When (m,ts) is received at c:

ts = ts + 1;

foreach client c {
net-send(c,m,ts);

}

tc = max(tc, ts) + 1;

// broadcast an acknowledgement of m to everyone else

if (the message received is not itself an ACK) {

foreach client q {

net-send(q,ACK(m),tc);

}
}

put (m,ts) in a sorted queue;

while (the first non-ACK message in the queue has been ACK’ed by all clients) {

deliver(that first non-ACK message);
remove that message and its ACKs from the queue;

}

10/1/2007 CSE/EE 461 07au 12

An Example

N0

N1 N3

N2
t0

t1

t2

N3 ACKs

N3 receives

N1 sends

N2 ACKs

(*,2,*,3)(1,2,3,*)(1,2,*,*)(3,2,*,*)N1 ACKs

(*,*,*,0)(1,*,2,*)(1,2,*,*)(1,*,*,*)N0 sends

(*,*,*,0)(*,*,0,*)(*,0,*,*)(0,*,*,*)Startup

N3N2N1N0Event

Vectors show what each node knows about the local
time at all of the nodes. The algorithm does explicitly
keep these vectors – the times for other nodes are in the
messages in the queue.

Except for the first send from N0, we’re assuming all other
messages are received by all nodes, and that no two messages
are ever in the network at the same time. (That last bit just
for simplicity in constructing this example.)

7

10/1/2007 CSE/EE 461 07au 13

An Example

N0

N1 N3

N2
t0

t1

t2

(1,5,3,7)(1,5,8,7)(1,8,3,7)(8,5,3,7)N3 ACKs

(1,5,3,7)(1,5,6,*)(1,5,3,*)(6,5,3,*)N3 receives

(*,5,3,6)(1,5,6,*)(1,5,3,*)(6,5,3,*)N1 sends

(*,2,3,4)(1,2,3,*)(1,4,3,*)(4,2,3,*)N2 ACKs

(*,2,*,3)(1,2,3,*)(1,2,*,*)(3,2,*,*)N1 ACKs

(*,*,*,0)(1,*,2,*)(1,2,*,*)(1,*,*,*)N0 sends

(*,*,*,0)(*,*,0,*)(*,0,*,*)(0,*,*,*)Startup

N3N2N1N0Event

Vectors show what each node knows about the local
time at all of the nodes. The algorithm does explicitly
keep these vectors – the times for other nodes are in the
messages in the queue.

Except for the first send from N0, we’re assuming all other
messages are received by all nodes, and that no two messages
are ever in the network at the same time. (That last bit just
for simplicity in constructing this example.)

10/1/2007 CSE/EE 461 07au 14

One Last Thing: Layering Is Natural

m-send(m)

ch
at

ap
p

T
C
P

(R
PO

)

net-send()

R
T
O

M

deliver(m)receive()

ch
at

app

T
C
P (R

PO
)

R
T
O

M

deliver(m)receive()

ch
at

app

T
C
P(R

PO
)

R
T
O

M

“Network
Hardware”

“Network
Hardware”

I
P

(u
nr

e
li
ab

le
) I

P
(unre

liab
le

)
I
P

(unre
liab

le
)

