
16. Curves

Reading

w Angel, sections 4.1, 9.1-9.3, 9.6, 9.7

w Hearn & Baker, 10.6 - 10.9

w Bartels, Beatty, and Barsky.  An Introduction to
Splines for use in Computer Graphics and
Geometric Modeling, 1987.

w Farin. Curves and Surfaces for CAGD:  A Practical
Guide, 4th ed., 1997.

Curves before computers

The “loftsman’s spline”:

w long, narrow strip of wood or metal

w shaped by lead weights called “ducks”

w gives curves with second-order continuity,
usually

Used for designing cars, ships, airplanes, etc.

But curves based on physical artifacts can’t be
replicated well, since there’s no exact definition of
what the curve is.

Around 1960, a lot of industrial designers were
working on this problem.

Motivation for curves

What do we use curves for?

w building models

w movement paths

w animation



Mathematical curve representation

w Explicit   y=f(x)
• what if the curve isn’t a function?

w Implicit   f(x,y,z) = 0
• hard to work with.

w Parametric   (f(u),g(u))

Parametric polynomial curves

We’ll use parametric curves where the functions are
all polynomials in the parameter.

Advantages:

w easy (and efficient) to compute

w infinitely differentiable

∑

∑

=

=

=

=

n

k

k
k

n

k

k
k

ubuy

uaux

0

0

)(

)(

de Casteljau’s algorithm

V0

V1 V2

V3

Recursive interpolation:

What if u=0?

What if u=1?

Finding Q(u)

In general,

This defines a class of curves called Bézier curves.

What’s the relationship between the number of
control points and the degree of the polynomials?

=

=′′
=′′

=′
=′
=′

)(

1

0

2

1

0

uQ

V

V

V

V

V



Bernstein polynomials

The coefficients of the control points are a set of
functions called the Bernstein polynomials.

Useful properties on the interval [0,1]:

w each is between 0 and 1

w sum of all four is exactly 1

These together imply that the curve lies within the
convex hull of its control points.

3
3

2
2

2
1

3
0

)(

)1(3)(

)1(3)(

)1()(

uuB

uuuB

uuuB

uuB

=

−=

−=

−=

B1

B0 B3

B2

Displaying Bézier curves

How could we draw one of these things?

It would be nice if we had an adaptive algorithm, that
would take into account flatness.

DisplayBezier( V0, V1, V2, V3 )

begin

       if ( FlatEnough( V0, V1, V2, V3 ) )

              Line( V0, V3 );

       else

              something;

end;

V0

V1 V2

V3

Subdivide and conquer

DisplayBezier( V0, V1, V2, V3 )

begin

       if ( FlatEnough( V0, V1, V2, V3 ) )

              Line( V0, V3 );

       else

               Subdivide(V[]) ⇒ L[], R[]

              DisplayBezier( L0, L1, L2, L3 );

              DisplayBezier( R0, R1, R2, R3 );

end;

V1 V2

V3

V0

V0'

V1'

V2'

V1"

V0"
Q(u)

Testing for flatness

Compare total length of control polygon to length of
line connecting endpoints:

ε+<
−

−+−+−
1

30

322110

VV

VVVVVV

V0

V1 V2

V3



More complex curves

Suppose we want to draw a more complex curve.

Why not use a high-order Bézier?

Instead, we’ll splice together a curve from individual
segments that are cubic Béziers.

Why cubic?

There are three properties we’d like to have in our
newly constructed splines…

Local control

One problem with Béziers is that every control point
affects every point on the curve (except the
endpoints).

Moving a single control point affects the whole
curve!

We’d like our spline to have local control, that is,
have each control point affect some well-defined
neighborhood around that point.

Interpolation

Bézier curves are approximating.  The curve does
not (necessarily) pass through all the control points.
Each point pulls the curve toward it, but other points
are pulling as well.

We’d like to have a spline that is interpolating, that
is, that always passes through every control point.

Continuity

We want our curve to have continuity.  There
shouldn’t be an abrupt change when we move from
one segment to the next.

There are nested degrees of continuity:

C0: C1:

C2: C3, C4, …:

C2

C
1  only



Ensuring continuity

Let’s look at continuity first.

Since the functions defining a Bézier curve are
polynomial, all their derivatives exist and are
continuous.

Therefore, we only need to worry about the
derivatives at the endpoints of the curve.

First, we’ll rewrite our equation for Q(u) in matrix
form:

[ ]




































−
−

−−

=

3

2

1

0

23

1

33

363

1331

1)(

V

V

V

V

uuuuQ

Derivatives at the endpoints

In general, the nth derivative at an endpoint depends
only on the n+1 points nearest that endpoint.

)2(6)1(

)2(6)0(

)(3)1(

)(3)0(

321

210

23

01

VVVQ

VVVQ

VVQ

VVQ

+−=′′
+−=′′

−=′
−=′

V0

V1 V2

V3

Ensuring C2 continuity

Suppose we have a cubic Bézier defined by
(V0,V1,V2,V3), and we want to attach another curve
(W0,W1,W2,W3) to it, so that there is C2 continuity at
the joint.

V0

V1 V2

V3

A-frames and continuity

Let’s try to get some geometrical intuition about
what this last continuity equation means.

If a and b are points, what is (2a-b)?

)2()2(2

44

1223

2312

VVVV

VVVW

−−−=
−+=



Building a complex spline

Instead of specifying the Bézier control points
themselves, let’s specify the corners of the A-frames
in order to build a C2 continuous spline.

These are called B-splines.  The starting set of points
are called de Boor points.

B0

B1 B2

B3 B4

B5

B-splines

Here is the completed B-spline.

What are the Bézier control points, in terms of the de
Boor points?

=
=
=
=

3

2

1

0

V

V

V

V

B0

B1 B2

B3 B4

B5

Endpoints of B-splines

We can see that B-splines don’t interpolate the de
Boor points.

It would be nice if we could at least control the
endpoints of the splines explicitly.

There’s a hack to make the spline begin and end at
control points by repeating them.

543210 BBBBBB

C2 interpolating splines

Interpolation is a really handy property to have.

How can we keep the C2 continuity we get with B-
splines but get interpolation, too?

Here’s the idea behind C2 interpolating splines.
Suppose we had cubic Béziers connecting our
control points C0, C1, C2, …, and that we somehow
knew the first derivative of the spline at each point.

What are the V and W control points in terms of Cs
and Ds?

C0

D0

C1

D1

C2 D2

D3

C3



Finding the derivatives

Now what we need to do is solve for the derivatives.
To do this we’ll use the C2 continuity requirement.

13

13
1

12

03
1

01

00

CV

DCV

DCV

CV

=
−=
+=

=

23

23
1

22

13
1

11

10

CW

DCW

DCW

CW

=
−=
+=

=

)2(6)2(6 210321 WWWVVV +−=+−

Finding the derivatives, cont.

Here’s what we’ve got so far:

How many equations is this?

How many unknowns are we solving for?

)(34

)(34

)(34

212

13321

02210

−−− −=++

−=++
−=++

mmmmm CCDDD

CCDDD

CCDDD

M

Not quite done yet

We have two additional degrees of freedom, which
we can nail down by imposing more conditions on
the curve.

There are various ways to do this.  We’ll use the
variant called natural C2 interpolating splines,
which requires the second derivative to be zero at
the endpoints.

This condition gives us the two additional equations
we need.  At the C0 endpoint, it is:

0)2(6 210 =+− VVV

Solving for the derivatives

Let’s collect our m+1 equations into a single linear
system:

It’s easier to solve than it looks.

We can use forward elimination to zero out
everything below the diagonal, then back
substitution to compute each D value.

























−
−

−
−
−

=

















































−

−−

)(3

)(3

)(3

)(3

)(3

21

141

141

141

12

1

2

13

02

01

1

2

1

0

mm

mm

m

m

CC

CC

CC

CC

CC

D

D

D

D

D

MMO



C2 interpolating spline

Once we’ve solved for the real Dis, we can plug them
in to find our Bézier control points and draw the final
spline:

Have we lost anything?

C0

D0
C1

D1

C2

D2

D3

C3

A third option

If we’re willing to sacrifice C2 continuity, we can get
interpolation and local control.

Instead of finding the derivatives by solving a system
of continuity equations, we’ll just pick something
arbitrary but local.

If we set each derivative to be a constant multiple of
the vector between the previous and next controls,
we get a Catmull-Rom spline.

C0

C1

C2

C3

C4

Catmull-Rom splines

The math for Catmull-Rom splines is pretty simple:

23

13322

02311

10

)(

)(

CV

CCCV

CCCV

CV

t

t

=
−+=

−+=
=

C0

D0 D1

D2

D3

D4

C1

C2

C3

C4

Summary

What to take home from this lecture:

w Geometric and algebraic definitions of Bézier
curves.

w Basic properties of Bézier curves.

w How to display Bézier curves with line
segments.

w Meanings of Ck continuities.

w Geometric conditions for continuity of cubic
splines.

w Properties of C2 interpolating splines, B-splines,
and Catmull-Rom splines.

w Geometric and algebraic construction of B-
splines and Catmull-Rom splines.


