Aliasing

- Real-world signals are continuous. When we sample them digitally, we pick off values at some set of times.
- How well do these samples approximate the signal?

Aliasing

Compositing

• When the signal's frequency is sufficiently high, the samples are inadequate and aliasing results:

• The high-frequency signal has been "aliased": it has taken on the identity of a lower-frequency signal.

Examples of Aliasing

- Rendering objects to the framebuffer
- Rapidly-varying continuous signal
- · Temporal aliasing

Antialiasing

· How can we eliminate aliasing?

Image Matting

- To assemble images from parts, we associate a matte with each part
 - Record which pixels belong to the foreground, which to the background
 - Discard background pixels when assembling
- Problem: The matte must record more than a single bit of information per pixel

Compositing Motivation

- Sometimes, a single image needs to be constructed out of parts.
 - Mixing 3D graphics with film
 - adding a backdrop to a scene
 - Painting objects into a scene
- Sometimes, it's just better to do things in parts
 - Can save time in ray tracing
 - A small problem in one part can easily be fixed in the final image
- Need a method for building up an image from a set of components
 - Ideally, invent a general "algebra" of compositing

The Alpha Channel

- To make compositing work, we store an alpha value along with colour information for every pixel.
- α records how much a pixel is covered by the given colour
 - The set of alpha values for an image is called the alpha channel
 - Transparent when $\alpha = 0$
 - Opaque when $\alpha = 1$
- Relationship between α and RGB:
 - computed at same time
 - Need comparable resolution
 - Can manipulate in almost exactly the same way

The Meaning of Alpha

- How might we store the information for a pixel that's 50% covered by red?
- It turns out that we'll always want to multiply the colour components by α, so store (R,G,B,α) in premultiplied form:

- What do the premultiplied R, G and B values look like?
- What does (0,0,0,1) represent?
- What about (0,0,0,0)?

Compositing Semi-Transparent Objects

- If we wish to composite two semi-transparent pixels over a background, things are a little easier.
- Suppose we wish to composite colours A and B with opacities α_A and α_B over a background G
- How much of G shows through A and B?
- How much of G is blocked by A and passed by B?
- How much of G is blocked by B and passed by A?
- · How much of G is blocked by A and B?

Compositing Assumptions

- The goal of compositing is to approximate the behaviour of overlaid images inside partiallycovered pixels
 - We don't know how the pixel is covered, just how much
 - We need to make assumptions about the nature of this coverage
- · We'll consider two cases:
 - Two semi-transparent objects; alpha channel records transparency
 - Two hard-edged opaque objects; alpha channel records coverage

Compositing Opaque Objects

- Assume that a pixel is partially covered by two objects, A and B.
 - We can use $\alpha_{\!\scriptscriptstyle A}$ and $\alpha_{\!\scriptscriptstyle B}$ to encode what fractions of the pixel are covered by A and B respectively
- · How does A divide the pixel?
- · How does B divide the pixel?
- How does A divide B?
- Compositing assumption: A and B are uncorrelated
 - This lets us make educated guesses about the colour of the composed pixel
 - Works well in practice

Pixel Pieces

 Given the compositing assumption, we can state the areas of different parts of the pixel:

 $\overline{A} \cap \overline{B}$

 $\overline{A} \cap B$

 $A \cap \overline{B}$

 $A \cap B$

 Why do these areas depend on lack of correlation?

Compositing Possibilities

 The contributions of A and B to the pixel divide the pixel area into four regions. When compositing, we have to choose what will be visible in each region.

Name	Description	Possibilities
0	$\overline{A} \cap \overline{B}$	0
\boldsymbol{A}	$A \cap \overline{B}$	0, A
B	$\overline{A} \cap B$	0, B
AB	$A \cap B$	0, A, B

 According to this enumeration, how many binary compositing operators are there?

The 12 Compositing Operators

 We can define a compositing operator by giving a 4-tuple listing what to keep in the regions 0, A, B and AB.

(0,0,0,0)

(O,A,O,A)

(0,0,B,B)

(0,A,B,A)

(0,A,B,B)

(0,0,0,A)

(0,0,0,B)

(O,A,O,O)

(0,0,B,0)

(0,0,B,A)

(0,A,O,B)

(0,A,B,0)

Computing the Colour

- Let's say we want to show a fraction F_A of A and a fraction F_B of B in the composite.
- What should the alpha value of the composite be?
- What should the colour component be in each channel?

The "plus" operator

- All the operators are all-or-nothing in region AB.
 Sometimes we want to show a blend of A and B in AB, for example when dissolving from one image to another.
- We define A plus B using the tuple (0,A,B,AB) where AB represents a blend of A and B.

Computing F_A and F_B

- All that remains is to compute F_A and F_B.
 - Depends on and determines the compositing operator
 - Can be derived by inspection of the compositing diagrams
- Examples

Operation F_A F_B
clear
A
B
A over B
A in B
A plus B

• Note correspondence with glBlendFunc

Unary Operators

• There are also some useful unary operators

darken(R,G,B, α , ϕ) = dissolve(R,G,B, α , δ) =

Example

• Example from the Genesis Effect:

(FFire plus (BFire out Planet) over darken(Planet, 0.8) over Stars

Summary

- Sources of aliasing and techniques for antialiasing
- · Reasons for doing compositing
- The meaning of alpha and the alpha channel
- Definition of compositing operators
- Definition and implications of the compositing assumption
- Computation of composited images
- Practical use of compositing

