The Quest for 3D

We can already do a significant part of 3D graphics!

* Construct a 3D hierarchical geometric model
* Define a virtual camera

* Map points in 3D space to points in an image
- And lines too!

* So we could take a 3D polygonal model and
produce a wireframe drawing in 2D

* Of course, there’s more work to be done...

Introduction

* Not every part of every 3D object is visible to a
particular viewer. We need an algorithm to
determine what parts of each object should get
drawn.

* Known as “hidden surface elimination” or “visible
surface determination”.

* Hidden surface elimination algorithms can be
categorized in three major ways:

- Object space vs. image space
- Object order vs. image order
- Sort first vs. sort last

* Still a very active research area
* Where would we use a hidden surface algorithm?

Hidden 8 urfaces

Object Space Algorithms

* Operate on geometric primitives

- For each object in the scene, compute the part of
it which isn’t obscured by any other object, then
draw.

- Must perform tests at high precision
- Resulting information is resolution-independent

e Complexity
- Must compare every pair of objects, so O(n?) for n
objects
- Optimizations can reduce this cost, but...

- Best for scenes with few polygons or resolution-
independent output

* Implementation
- Difficult to implement!
- Must carefully control numerical error

Image Space Algorithms

Operate on pixels

- For each pixel in the scene, find the object closest
to the COP which intersects the projector through
that pixel, then draw.

- Perform tests at device resolution, result works
only for that resolution

Complexity

- Must do something for every pixel in the scene, so
at least O(R).

- Easiest solution is so test projector against every
object, giving O(NR).

- More reasonable version only does work for pixels
belonging to objects: O(nr), r is number of pixels
per object

- Often, with more objects, each is smaller, so we
estimate nr = O(R) in practice

Implementation
- Usually very simple!

Sort First vs. Sort Last

Sort first

- Find some depth-based ordering of the objects
relative to the camera, then draw from back to
front

- Build an ordered data structure to avoid
duplicating work

Sort last

- Sort implicitly as more information becomes
available

Object Order vs. Image
Order

* Object order

- Consider each object only once - draw its pixels
and move on to the next object

- Might draw the same pixel multiple times

* Image order

- Consider each pixel only once - draw part of an
object and move on to the next pixel

- Might compute relationships between objects
multiple times

Important Algorithms

* Ray casting

* Z-buffer

* Binary space partitioning
* Back face culling

Ray Casting

Partition the projection plane into pixels to match
screen resolution

For each pixel p;, construct ray from COP through
PP at that pixel and into scene

Intersect the ray with every object in the scene,
colour the pixel according to the object with the

closest intersection

Aside: Definitions

An algorithm exhibits coherence if it uses
knowledge about the continuity of the objects on
which it operates
An online algorithm is one that doesn’t need all
the data to be present when it starts running

- Example: insertion sort

Ray Casting
Implementation

Parameterize the ray:
R(t) = (1-t)c + tp,

If a ray intersects some object O,, get parameter t;
such that first intersection with O; occurs at R(t;)

Which object owns the pixel?

Ray Casting Analysis

Categorization:

Easy to implement?

Hardware implementation?
Coherence?

Memory intensive?
Pre-processing required?
Online?

Handles transparency?
Handles refraction?
Polygon-based?

Extra work for moving objects?
Extra work for moving viewer?
Efficient shading?

Handles cycles and self-intersections?

Z-buffer

* |dea: along with a pixel’s red, green and blue
values, maintain some notion of its depth
- An additional channel in memory, like alpha
- Called the depth buffer or Z-buffer

void draw_mode_setup(void) {
G1Enable(GL_DEPTH_TEST):

3

* When the time comes to draw a pixel, compare
its depth with the depth of what’s already in the
framebuffer. Replace only if it's closer

* Very widely used

* History

- Originally described as “brute-force image space
algorithm”

- Written off as impractical algorithm for huge
memories

- Today, done easily in hardware

Z-buffer Tricks

The shade of a triangle can be computed
incrementally from the shades of its vertices

Can do the same with depth

(R,G,B,2)
1

#

A
Ve

(Ry,G;,B,2)

| ——1

(R,G;B,2))

Z-buffer Implementation

for each pixel p;

{

}

Z-buffer[p; 1 = FAR
Fb[p; 1 = BACKGROUND_COLOUR

for each polygon P
{

for each pixel p; in the projection of P

{

Compute depth z and shade s of P at p;

if z < Z-buffer[p;]

{
Z-buffer[p; 1 = z
Fb[p; 1 =5

Z-buffer Analysis

Categorization:

Easy to implement?

Hardware implementation?
Coherence?

Memory intensive?
Pre-processing required?
Online?

Handles transparency?
Handles refraction?
Polygon-based?

Extra work for moving objects?
Extra work for moving viewer?
Efficient shading?

Handles cycles and self-intersections?

Binary Space Partitioning

* Goal: build a tree that captures some relative
depth information between objects. Use it to
draw objects in the right order.

- Tree doesn’t depend on camera position, so we
can change viewpoint and redraw quickly

- Called the binary space partitioning tree, or
BSP tree
* Key observation: The polygons in the scene are
painted in the correct order if for each polygon P,
- Polygons on the far side of P are painted first
— Pis painted next
- Polygons in front of P are painted last

BSP Tree Construction

Ptree ma eB P L Tist of polygon

if L is empty

{

return the empty tree
}
Choose a polygon P from L to ser e as root

plit all polygons in L according to P

return ne reeNode

2]

ma eB P polygons on negati

ma eB P polygons on positi

* Splitting polygons is expensive! It helps to
choose P wisely at each step.

- Example: choose five candidates, keep the one
that splits the fewest polygons

Building a BSP Tree (in 2D)

N4 ;
y 7

L. A\

\

BST Tree Display

sho B P ie
{
if is empty then return
= root of
if ie er is in front of P
{
sho B P Teft subtree ol
dra P
sho B P right subtree ¢
} else {
sho B P right subtree
dra P
sho B P Teft subtree of
}
}

BSP Tree Analysis

Categorization:

Easy to implement?

Hardware implementation?
Coherence?

Memory intensive?
Pre-processing required?
Online?

Handles transparency?
Handles refraction?
Polygon-based?

Extra work for moving objects?
Extra work for moving viewer?
Efficient shading?

Handles cycles and self-intersections?

Summary

Classification of hidden surface algorithms and

qguestions we may ask about them

Understanding of Z-buffer and ray casting

algorithms

Familiarity with BSP trees and back face culling

Back Face Culling

Can be used in conjunction with polygon-based
algorithms

Often, we don’t want to draw polygons that face
away from the viewer. So test for this and
eliminate (cull) back-facing polygons before
drawing

How can we test for this?

Reading

Required:
* Angel, section 7.7
Optional:

Foley et al, chapter 15

