Problem 1 – Hierarchical Modeling

Suppose you want to model a walking table as shown below. There are two primitives available to you: square and foot. The local coordinates for each primitive are shown.

The following transformation expressions are available to you:

· R(() – rotate by (degrees (counter clockwise).

· T(tx, ty) – translate by tx, ty
· S(sx, sy) – scale sx and sy in the x and y directions

· RY – reflect through the y-axis

Primitives

[image: image1.png]

[image: image2.png](5,0

©.-3

square

foot

Walking Table Diagram

Problem 1 (continued)

1a) On the diagram on the previous page, label the different pieces of the walking table.

Now, draw a tree hierarchy to specify the walking table. Use your naming convention for the nodes and label the transformations along the edges of the tree.

1b) Now write expressions for each of these edge transformations using only the

transformation expressions given on the previous page. Leave and as symbols; these are the parameters that you intend to animate. All other parameters should be definite numbers that you can estimate from the figure. Assume the square is one unit in size.

Problem 1 (continued)

1c) What is the entire sequence of transformations applied to the foot on the left hand

side of the figure?

1d) Redraw your hierarchy using a directed acyclic graph (DAG) to simplify the

specification.

Problem 2 – 2D Transformations
As discussed in class, any two-dimensional affine transformation can be represented as a 3X3 matrix. Here are some useful matrices:

A = B(a,b) = C(a,b) =

D(a,b) = E = F(a) =

2a) Which of the matrices above implements each of the following transformations?

Rotation about the origin

Reflection through the line y=x

Translation

Shearing

Differential (Non-Uniform) Scaling

Reflection through the x-axis

Problem 2 (continued)

2b) Consider the line L and the triangle PQR shown below. The equation of the line L is

Y = (-3/5) X - 3

Describe a 3X3 transformation matrix that reflects triangle PQR through the line L. (Hint: You should express you answer as the product of matrices shown on the previous page. All matrices should be filled out with exact numerical values).

2d) Show that the transformation matrix for reflecting about the line y = -x is equivalent

to a reflection relative to the y-axis followed by a counter-clockwise rotation of 90º.

Problem 3 - 3D Transformations
3) Suppose you wanted to rotate a cube with vertices {±1, ±1, ±1} about its main

diagonal through an angle of . Derive a transformation matrix to achieve this rotation. (You won’t need to write out the matrices; instead, you may express your answer as a product of transformations about principal axes such as “R(x, ).”)

Problem 4 - Projections
Projections in computer graphics can be broken down into two major types: “perspective projections” and “parallel projections”.

4a) Complete the following table, summarizing properties of these two types of

projections.

PROPERTY
PERSPECTIVE
PARALLEL

Parallel lines remain parallel [Y/N]:

Angles are preserved [Y/N]:

Lengths vary with distance to eye [Y/N]:

Under perspective projections, any set of parallel lines that are not parallel to the projection plane will converge to a “vanishing point”. Vanishing points of lines parallel to a principal axis x, y, or z are called “principal vanishing points”.

4b) How many different vanishing points can a perspective drawing have?

4c) How many different principal vanishing points can a perspective drawing have?

Problem 4 (continued)

Parallel projections can be further broken down into two types: “orthographic projections”, where the direction of projection is perpendicular to the projection plane; and “oblique projections,” where the direction of projection makes some angle θ ≠ 90˚ with respect to the projection plane.

Two common types of oblique projections are the “cavalier projection” and the “cabinet projection”. In a cavalier projection the foreshortening factors for all three principal directions are equal, whereas in a cabinet projection the edges perpendicular to the plane of projection are foreshortened by one-half.

4d) Suppose you wanted to use an oblique projection that foreshortened the edges

perpendicular to a plane of projection by one-third instead of one-half. What angle  between the direction of projection and the projection plane is required?

Problem 5 - Hidden Surface Algorithms
The Z-buffer algorithm can be improved by using an image space “Z-pyramid.” The basic idea of the Z-pyramid is to use the original Z-buffer as the finest level in the pyramid, and then combine four Z-values at each level into one Z-value at the next coarser level by choosing the farthest (largest) Z from the observer. Every entry in the pyramid therefore represents the farthest (largest) Z for a square area of the Z-buffer.

5a) At the coarsest level of the pyramid there is just a single Z value. What does that Z

value represent?

Suppose we wish to test the visibility of a polygon P. Let ZP be the nearest (smallest) Z value of polygon P. Let R be the smallest region in the Z-pyramid that completely covers polygon P, and let ZR be the Z value that is associated with region R in the Z-pyramid.

5b) What can we conclude if ZR < ZP?

5c) What can we conclude if ZP < ZR?

Problem 5 (continued)

If the visibility test is inconclusive, then the algorithm applies the same test recursively: it goes to the next finer level of the pyramid, where the region R is divided into four quadrants, and attempts to prove that polygon P is hidden in each of the quadrants of R that P intersects. Since it is expensive to compute the closest Z value of P within each quadrant, the algorithm just uses the same ZP (the nearest Z of the entire polygon) in making the comparison in every quadrant. If at the bottom of the pyramid the test is still inconclusive, the algorithm resorts to ordinary Z-buffered scan conversion to resolve visibility.

5d) Suppose that, instead of using the above algorithm, we decided to go to the expense

of computing the closest Z value of P within each quadrant. Would it then be possible to always make a definitive conclusion about the visibility of P within each pixel, without resorting to scan conversion? Why or why not?

Another type of coherence that one might like to exploit in a hidden surface algorithm is temporal coherence - the fact that the same polygons are likely to remain visible from one frame of an animation to the next.

5e) Suppose that we kept track of the polygons that were at least partially visible for

some frame t. How might we use this information in frame t + 1 to exploit temporal coherence with a Z-pyramid? How much better is using a Z-pyramid in this case than using a simple Z-buffer?

Y

X

Y

X

cos a sin a 0

-sin a cos a 0

 0 0 1

1 0 a

0 1 b

0 0 1

1 0 0

0 -1 0

0 0 1

a 0 0

0 b 0

0 0 1

1 a 0

0 1 0

0 0 1

0 1 0

1 0 0

0 0 1

7

