Rigid Body Simulation

Particle State

$$
\mathbf{Y}=\binom{x(t)}{v(t)}
$$

Particle Motion

State Derivative

$$
\frac{d}{d t} \mathbf{Y}=\frac{d}{d t}\binom{x(t)}{v(t)}=\binom{v(t)}{F(t) / m}
$$

Particle Dynamics

State Derivative

$$
\left(\begin{array}{c}
x_{1}(t) \\
v_{1}(t) \\
\vdots \\
x_{n}(t) \\
v_{n}(t)
\end{array}\right)=\left(\begin{array}{c}
v_{1}(t) \\
F_{1}(t) / m_{1} \\
\vdots \\
v_{n}(t) \\
F_{n}(t) / m_{n}
\end{array}\right)
$$

$$
\frac{d}{d t} \mathbf{Y}=
$$

Multiple Particles

ODE solution

void dydt(double t, double $y[]$, double ydot[])
dydt

$\mathbf{Y}(t)=$	$x_{1}(t)$
$v_{1}(t)$	
\vdots	
$x_{n}(t)$	
$v_{n}(t)$	\rightarrow
:---:	
$F_{1}(t) / m_{1}$	
\vdots	
$v_{n}(t)$	
$F_{n}(t) / m_{n}$	

Rigid Body State

$$
\mathbf{Y}=\left(\begin{array}{c}
x(t) \\
? \\
v(t) \\
?
\end{array}\right)
$$

Rigid Body Equation of Motion

$$
\frac{d}{d t} \mathbf{Y}=\frac{d}{d t}\left(\begin{array}{c}
x(t) \\
? \\
M v(t) \\
?
\end{array}\right)=\left(\begin{array}{c}
v(t) \\
? \\
F(t) \\
?
\end{array}\right)
$$

Net Force

$F(t)=\sum f_{i}$

Orientation

We represent orientation as a rotation matrix $R(t) .{ }^{\dagger}$ Points are transformed from body-space to world-space as:

$$
p(t)=R(t) p_{0}+x(t)
$$

†Actually, we use quaternions.

body space

Angular Velocity

We represent angular velocity as a vector $\omega(t)$, which encodes both the axis of the spin and the speed of the spin.

How are $R(t)$ and $\omega(t)$ related?

Angular Velocity Definition

Angular Velocity

$\dot{R}(t)$ and $\omega(t)$ are related by

$$
\frac{d}{d t} R(t)=\left(\begin{array}{ccc}
0 & -\omega_{z}(t) & \omega_{y}(t) \\
\omega_{z}(t) & 0 & -\omega_{x}(t) \\
-\omega_{y}(t) & \omega_{x}(t) & 0
\end{array}\right) R(t)
$$

($\omega(t)^{*}$ is a shorthand for the above matrix)

Rigid Body Equation of Motion

$$
\frac{d}{d t} \mathbf{Y}=\frac{d}{d t}\left(\begin{array}{c}
x(t) \\
R(t) \\
M v(t) \\
\langle\omega(t)\rangle
\end{array}\right)=\left(\begin{array}{c}
v(t) \\
\omega(t)^{*} R(t) \\
F(t) \\
?
\end{array}\right)
$$

Need to relate $\dot{\omega}(t)$ and mass distribution to $F(t)$.

Inertia Tensor

$$
I(t)=\left(\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right)
$$

diagonal terms
$I_{x x}=M \int_{V}\left(y^{2}+z^{2}\right) d V$
off-diagonal terms

$$
I_{x y}=-M \int_{V} x y d V
$$

Rigid Body Equation of Motion

$P(t)$ - linear momentum
$L(t)$ - angular momentum

Net Torque

Inertia Tensors Vary in World Space...

$$
I_{x x}=M \int_{V}\left(y^{2}+z^{2}\right) d V \quad I_{x y}=-M \int_{V} x y d V
$$

... but are Constant in Body Space

$$
I(t)=R(t) I_{\mathrm{body}} R(t)^{T}
$$

Approximating $\mathrm{I}_{\text {body }}$-Bounding Boxes

Pros: Simple.
Cons: Bounding box may not be a good fit. Inaccurate.

Approximating $\mathrm{I}_{\mathrm{body}} —$ Point Sampling

Pros: Simple, fairly accurate, no B-rep needed. Cons: Expensive, requires volume test.

Computing $\mathrm{I}_{\mathrm{body}}$ - Green's Theorem (Twice!)

Pros: Simple, exact, no volumes needed.
Cons: Requires B-rep.
Code: http://www.acm.org/jgt/papers/Mirtich96

Computing $I_{\text {body }}$ at the center of mass

The inertia tensor should be relative to the body's center of mass, e.g:

$$
\begin{aligned}
& I_{x x}=I_{x x}^{\prime}-m\left(r_{y}^{2}+r_{z}^{2}\right) \\
& I_{x y}=I_{x y}^{\prime}-m r_{x} r_{y}
\end{aligned}
$$

Rigid Body Equation of Motion

$P(t)$ - linear momentum
$L(t)$ - angular momentum

Related Research

- Interactive control of rigid-body simulations

