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Reading

Required:
¢ Angel 3.1,3.7-3.11

Further reading:

+ Angel, the rest of Chapter 3

+ Foley, et al, Chapter 5.1-5.5.

+ David F. Rogers and J. Alan Adams, Mathematical
Elements for Computer Graphics, 2" Ed., McGraw-
Hill, New York, 1990, Chapter 2.

Geometric transformations

Geometric transformations will map points in one
space to points in another: (x', y’, z') =f(x,y, z).

These transformations can be very simple, such as
scaling each coordinate, or complex, such as non-
linear twists and bends.

We'll focus on transformations that can be
represented easily with matrix operations.

Vector representation

We can represent a point, p = (x, ¥), in the plane or p=(x, , )
in 3D space
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* as column vectors |: :|

* asrow vecto
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We will use column vectors.




Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M :
x' a bjx
y'| L dly

x'=ax+by

So:

y'=cx+dy

We will develop some intimacy with the elements g, b, ¢, d...

Identity

Suppose we choose a=d =1, b=c=0:

+ Gives the identity matrix:

F] - 5[

+ Doesn't move the points at all
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Scaling
Suppose we set b=c=0, but leta and d take on any
positive value:
+ Gives a scaling matrix:
[x‘] B {a oMq _ {N‘]
gl Lo dllyl " Ley
+ Provides differential (non-uniform) scaling in x
andy: ' ax
y'=dy
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Suppose we keep b=c =0, but let eithera ord go
negative.

Examples:




Shear

Now let's leave a=d =1 and experiment with b.. ..

Effect on unit square

Let's see how a general 2 x 2 transformation M affects
the unit square:

The matrix
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Effect on unit square, cont. Rotation
Observe: From our observations of the effect on the unit square,
. X it should be easy to write down a matrix for “rotation
¢ Origin invariant under M about the origin”:
* M can be determined just by knowing how the , ,
corners (1,0) and (0,1) are mapped ' L
¢ a and d give x- and y-scaling
¢ b and c give x- and y-shearing 1
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Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

+ Scaling

+ Rotation

+ Reflection
+ Shearing

Q: What important operation does that leave out?
/
} fans IML i
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Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a
third component to every point:

X
X

Mk
Y 1

Adding the third “w” component puts us in
homogenous coordinates.

And then transform with a 3 x 3 matrix:
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Anatomy of an affine matrix

The addition of translation to linear

transformations gives us affine transformations.

In matrix form, 2D affine transformations always
look like this:

2D affine transformations always have a bottom
rowof [00 1].

An “affine point”is a “linear point” with an added
w-coordinate which is always 1:
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Applying an affine transformation gives anether
affine point:
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Rotation about arbitrary points

Until now, we have only considered rotation about the

origin.

{_ > < ’h/rmj‘ld(\'h—-\
With homogeneous coordinates, you can specify a rotation,
0, about any point q = gy qy]T with a matrix. Y{( ) B ro"fm‘&*‘m ‘

< | <>% @
M, %fm k(o)

1. Translate q to origin

2. Rotate M T(@R )—r( 7,)

3. Translate back

Note: Transformation order is important!!
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Points and vectors

Vectors have an additional coordinate of w= 0. Thus, a
change of origin has no effect on vectors.

Q: What happens if we multiply a vector by an affine

matrix? b1, v, avy + bv\j
& a *7} vy | = |yt dvy
0 0 | 5 o)

These representations reflect some of the rules of affine

operations on points and vectors:
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One useful combination of affine gperations is:
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Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D
ones.

For example, scaling:

x' s, 0 0 Of«x
y'1 |0 s, 0 Oly
z|'lo 0 s, 0fz
1 0 0 0 1]
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Translation in 3D Rotation in 3D (cont’d)
These are the rotations about the canonical axes:
x' 10 0 ¢t |x
[ 0 0 0]
! 01 0t
y' = y y Ro(a) = 0 cosa -sina 0O
z 00 1 ¢tz =10 sing  cosa 0
1 00 0 1|1 0 o 0o 1]
[cosp 0 sing O]
R(B)= 0 1 0 0
y(h)= —sinf 0 cosfB O
|l o o o 1]
y Yy [icosy —sinyl 0 0
siny cosy| 0 0O Use right hand rule
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g EX P A general rotation can be specified in terms of a
{i product of these three matrices. How else might
o you specify a rotation? -
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Shearing in 3D

Shearing is also more complicated. Here is one

example:
x| |1 b 0 0fx
y'| |0 1.0 0}y
z|7lo 0o 1 0|z
1 0 0 0 1|1
Y
X
z

We call this a shear with respect to the x-z plane.

Properties of affine transformations

6K
Here are some useful properties of affine pJ
transformations:
Pyt
¢ Lines map to lines ™ 'ﬂ‘"(

+ Parallel lines remain parallel

+ Midpoints map to midpoints (in fact, ratios are
always preserved)
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Affine transformations in OpenGL Summary
What to take away from this lecture:
OpenGL maintains a“modelview” matrix that holds
the current transformation M. ¢ Allthe names in boldface.
+ How points and transformations are represented.
The modelview matrix is applied to points (usually
vertices of polygons) before drawing. + How to compute lengths, dot proc}ucts, and cross
products of vectors, and what their geometrical
It is modified by commands including: meanings are.
+ glLoadTdentity () Ml + What all the elements of a 2 x 2 transformation
~ set M to identity matrix do and how these generalize to 3 x 3
transformations.
+ glTranslatef(t,, t,, t,) M« MT + What homogeneous coordinates are and how
- translate by (t,, t,, t,) they work for affine transformations.
+ How to concatenate transformations.
¢ glRotatef (8, x, y, z) M« MR + The mathematical properties of affine
- rotate by angle 6 about axis (x, y, z) transformations.
¢ glScalef(s,, s, s,) M <~ MS
- scale by (s, s,/ 5,)
Note that OpenGL adds transformations by
postmultiplication of the modelview matrix.
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