Affine transformations

Brian Curless CSE 457 Spring 2013

Reading

Required:

• Angel 3.1, 3.7-3.11

Further reading:

- Angel, the rest of Chapter 3
- Foley, et al, Chapter 5.1-5.5.
- David F. Rogers and J. Alan Adams,
 Mathematical Elements for Computer Graphics,
 2nd Ed., McGraw-Hill, New York, 1990, Chapter 2.

Geometric transformations

Geometric transformations will map points in one space to points in another: (x', y', z') = f(x, y, z).

These transformations can be very simple, such as scaling each coordinate, or complex, such as non-linear twists and bends.

We'll focus on transformations that can be represented easily with matrix operations.

Vector representation

We can represent a **point**, $\mathbf{p} = (x,y)$, in the plane or $\mathbf{p} = (x,y,z)$ in 3D space

Canonical axes

right-handed coord. System

Vector length and dot products

If
$$||v|| = ||v||^2 + |v||^2 + |v||^2$$

Vector cross products

WEN TO THE PROPERTY OF THE PRO

Representation, cont.

We can represent a 2-D transformation M by a m at rix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

If **p** is a column vector, M goes on the left:

$$(A B)^{-1} A^{-1} B^{-1} A^{-1}$$

$$\mathbf{p'} = M\mathbf{p}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

If **p** is a row vector, M^T goes on the right:

$$\mathbf{p'} = \mathbf{p} \mathcal{M}^T$$

$$[x' \ y'] = [x \ y] \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} ax + by & cx + dy \end{bmatrix}$$

We will use **column vectors**.

Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix. *M*:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

So:

$$x' = ax + by$$

$$y' = cx + dy$$

We will develop some intimacy with the elements a,b,c,d,...

Identity

Suppose we choose a=d=1, b=c=0:

• Gives the **identity** matrix:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• Doesn't move the points at all

Scaling

Suppose we set b=c=0, but let a and d take on any positive value:

• Gives a scaling matrix:

• Provides **differential (non-uniform) scaling** in *x* and *y*:

$$x' = ax$$
$$y' = dy$$

Reflection

Suppose we keep b=c=0, but let either a or d go negative.

Examples:

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{array}{c} x' = -x \\ 0 & -1 \end{bmatrix} \begin{array}{c} x' = -x \\ y' = -y \end{array}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{array}{c} x' = -x \\ y' = -y \end{array}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Shew

Now let's leave a=d=1 and experiment with b....

The matrix

gives:

$$x' = x + by$$
$$y' = y$$

Effect on unit square

Let's see how a general 2 x 2 transformation *M* affects the unit square:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \mathbf{p} & \mathbf{q} & \mathbf{r} & \mathbf{s} \end{bmatrix} = \begin{bmatrix} \mathbf{p}' & \mathbf{q}' & \mathbf{r}' & \mathbf{s}' \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & a & d + b \\ 0 & c & c + d \\ e' & q' & s' \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & a & d + b \\ 0 & c & c + d \\ e' & q' & s' \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & a & d + b \\ 0 & c & c + d \\ e' & q' & s' \end{bmatrix}$$

Effect on unit square, cont.

Observe:

- Origin invariant under M
- M can be determined just by knowing how the corners (1,0) and (0,1) are mapped
- a and a give x- and y-scaling
- band c give x-and y-shearing

Rotation

From our observations of the effect on the unit square, it should be easy to write down a matrix for "rotation about the origin":

Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

- Scaling
- Rotation
- Reflection
- Shearing

Q: What important operation does that leave out?

Translatin

Homogeneous coordinates

We can loft the problem up into 3-space, adding a third component to every point:

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \checkmark$$

Adding the third "w" component puts us in **homogenous coordinates**.

Then, transform with a 3 x 3 matrix:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = T(\mathbf{t}) \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$

... gives **translation**!

Affine transformations

The addition of translation to linear transformations gives us affine transformations.

In matrix form, 2D affine transformations always look like this:

2D affine transformations always have a bottom row of [0.0.1].

An "affine point" is a "linear point" with an added wcoordinate which is always 1: MPAH OUT Prin

$$\mathbf{p}_{\mathsf{aff}} = \begin{bmatrix} \mathbf{p}_{\mathsf{lin}} \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Applying an affine transformation gives another affine point:

$$M\mathbf{p}_{\mathsf{aff}} = \begin{bmatrix} A\mathbf{p}_{\mathsf{lin}} + \mathbf{t} \\ 1 \end{bmatrix}$$

Rotation about arbitrary points

Until now, we have only considered rotation about the origin.

R(6) T(4)

With homogeneous coordinates, you can specify a rotation, θ about any point $\mathbf{q} = [q_x q_y 1]^T$ with a matrix:

1. Translate **q** to origin

- 2. Rotate
- 3. Translate back

Note: Transformation order is important!!

Points and vectors

Vectors have an additional coordinate of w=0. Thus, a change of origin has no effect on vectors.

Q: What happens if we multiply a vector by an affine matrix?

$$Mv = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ o & 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ o \end{bmatrix} = \begin{bmatrix} av_x + bv_y \\ c & v_x + dv_y \\ 0 & 0 \end{bmatrix}$$

 $A = \begin{bmatrix} B_x - A_x \\ B_y - A_y \end{bmatrix}$ These representations reflect some of the rules of affine operations on points and vectors:

One useful combination of affine operations is:

$$\mathbf{p}(t) = \mathbf{p}_0 + t\mathbf{u}$$

21

Q: What does this describe?

Q: What do

V = [vx]

B+t

Basic 3-D transformations: scaling

Some of the 3-D affine transformations are just like the 2-D ones.

In this case, the bottom row is always [0 0 0 1].

For example, scaling:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Translation in 3D

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Rotation in 3D

Rotation now has more possibilities in 3D:

$$R_{\chi}(\alpha) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{z}(y) = \begin{bmatrix} \cos y & -\sin y & 0 & 0 \\ \sin y & \cos y & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Use right hand rule

A general rotation can be specified in terms of a prodout of these three matrices. How else might you specify a rotation?

Shearing in 3D

Shearing is also more complicated. Here is one

example:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & b & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

We call this a shear with respect to the x-z plane.

Properties of affine transformations

Here are some useful properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Midpoints map to midpoints (in fact, ratios are always preserved)

ratio =
$$\frac{\|\mathbf{p}\mathbf{q}\|}{\|\mathbf{q}\mathbf{r}\|} = \frac{s}{t} = \frac{\|\mathbf{p}'\mathbf{q}'\|}{\|\mathbf{q}'\mathbf{r}'\|}$$

Affine transformations in OpenGL

OpenGL maintains a "modelview" matrix that holds the current transformation **M.**

The modelview matrix is applied to points (usually vertices of polygons) before drawing.

It is modified by commands including:

• glTranslatef(
$$t_x$$
, t_y , t_z) $M \leftarrow MT$
- translate by (t_x, t_y, t_z)

• glRotatef(
$$\theta$$
, x, y, z) $\mathbf{M} \leftarrow \mathbf{MR}$
- rotate by angle θ about axis (x, y, z)

* glScalef(
$$s_x$$
, s_y , s_z) $\mathbf{M} \leftarrow \mathbf{MS}$
- scale by (s_x, s_y, s_z)

Note that OpenGL adds transformations by postmultiplication of the modelview matrix.

Summary

What to take away from this lecture:

- All the names in boldface.
- How points and transformations are represented.
- How to compute lengths, dot products, and cross products of vectors, and what their geometrical meanings are.
- What all the elements of a 2 x 2 transformation matrix do and how these generalize to 3 x 3 transformations.
- What homogeneous coordinates are and how they work for affine transformations.
- How to concatenate transformations.
- The mathematical properties of affine transformations.