Affine transformations

Brian Curless
CSE 457

Spring 2013




Reading

Requirad,

* Angel3.0,.3.7-3.11

Further reading;
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Angel, therest of Chapter 3
Foley, et al, Chapter 5.1-5.5.
David F. Rogers and 1, Alan Adames,

Mathematical Bements for Computer Graphics,
2 Ed., McGraw-Hill, Mew ¥ork, 1990, Chapter 2,




Geometric transformations

Geometric transformation s will map points in one
space to pointsin anothern § vl 77 =f i ¥ 2.

Thesetransformations can be wery simple, such as
scaling each coordinate, or complex, such asnon-
linear twists and ban ds.

W'l focus on transformations that can be
reprasented easily with matrix operations,




Vector representation

Wile can representa point, p = (xy). intheplane or
p=xxZ])in 30 space
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Vector length and dot products
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Vector cross Pfﬂd“ﬂts
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Representation, cont,
T AT
(ALY = BA

Wecanrepresent a 2-D transformation M by 3
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Weawill use column vactors,
column voct




Two-dimensional transformations

Hera's all vou getwith a 2 x 2 transformation matrix

M
x'_ a bl x
v' | Lo d]ly
oy
X'=ax+ by
yi= oo+ dy

Wewill develop some intimacy with the elements
abcd..




Identity

Supposewe choose g=d=I, b=c=0;

+ Givesthe identity matrix
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+ Doesnt movethe points at all
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Scaling

supposewe set b=c=0, but let g and dtake on any
pos itive walu e

+ (Gives asaling matrix;
L
|
+ Frovides differential (non-uniform) saaling in

X and .

¥i=dy

=
F——




gf_”m{ T-1aN

supposawe keep b=c=0d, but let either g or d go

negative,

Examplas:
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Mow let's leave g=d=T and experiment with &, . ..

The matrix
1 b
0
fives:
X=X+ by
¥i=y

=K
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Effect on unit square

Let's sea how a general 2 x 2 transformation M affacts
the unit square:
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Effect on unit square, cont,

Db arye;

*  Crigin imvariant under i

+ M can be determined just by knowing how the
corners (1,0 and (0.1) are mapped

*+ gandd givex- andy-scaling
+ bandcgive x-andy-shaaring
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Rotation

From our obsarvations of the effect onthe unit
suare it should be aasy to write down a matrix for
"rotation about the origin®™

Cosp TSR

W=R{&)=
) & inp €W

16




Limitations of the 2 x2 matrix

A 2% 2 linear transformation matrixallowes

scaling
Rotation

Reflection
shaaring

* &+ * »

Q: What important operation deasthat leave out?

/rr .:ms:] {35'_1' VA
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Homogeneous coordinates

We can loftthe problem up into 3-space, adding a
third component to every point:

Addingthethird"w" component putsuszin
homoganous coordinatas.

Then, transform with a3 2 2 matri=

X' 1 0
v|=Tww =0 1 ot ¥ = | YEE
" 0 0 1

... Qives translation!




Affine transformations

The addition of translation to linear tran sformations
gives usaffine transformations.

In matrix form, 20 affine transformations alway s look
lika this:

20 affine transformation s alway s have a bottom row
of [001],

An “affine point™is a”linear point™ with an added w-
coordinatewhich is ahways 1:
M fnﬁ:ﬁ“ ’

" X
paﬁ=[ ,'l} ¥
1

Applying an affine tran sformation gives another
affine point:
Mpg =[
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Rotation about arbitrary points

Lintil now, wa have only considerad rotation about
the arigin, /Ii [E\J

With homaogenaous coordinatas, wou can 5pe-:|ﬁ,r a T (“E\

retation, & about any point g =[q,, qy’l] with a
rr At ri:

M#T( '1,\ Kfﬂ“w T(Q)
%\

1. Translate ¢ to origin M = T{(ﬂt\ R(‘EB T(‘Er)

2, Rotate

3. Translate back

Mote: Transformation order isimportant!!
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Points and vectors

Vectors have an additional coordinate of w=0. Thus,
,;,U;l - T, a change of origin has no effect on wactors,
Y
@T] Q: What happensifwe multiply a vector by an affine
rrat ri? \ Uy by
o b Tx o
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Basic 3-D transformations: scaling

some of the 3-0 affine tran sformations ara just like
tha 2-0r ones,

In this case, the bottom rowis always [0 00 1],

For example, scaling:

X' 5, 00 Oflx
| _ C Sy O O v
z' o 0o = 0}z
A L U i |
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Translation in 3D
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Rotation in 3D

Rotation now has more possibilities in 30:
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A general rotation can be specified in terms of a
prodout of these three matrices, How else might vou v

'
specify a rotation? v s
v
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Shearing in 3D

Shearingis also more complicated. Hera is one

example: x-Sy ﬁ%"’ pors 3
('] ’IfE:u 0 o x]
| {of1]o ofy
| |olg/ 1 oz
T o0 0 T

| ¥

k-3

We call this a shearwith respectothe xz plane,
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Properties of affine transformations

Hera are some useful properties of affine
transformation =

*+ Linesmaptolines
+ Farallel linesremain parallel

*+ Midpoints mapto midpeoints (in fad, ratios are
alwiays prasarvad)

woclpal_s [Pl
lar| ¢ 4
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Affine transformations in OpenGL

CpenGl maintains a"modalview” matriz that holds the
current transformation i,

The maodelview matrix is applied to points (usually
vertices of polygons) before drawing,

Itis modified by commands including:
+ glLoadIdentity () M1
— sat Mto identity

+ glTranslatef(t , Tr t_] M~ MT

— translate by t, L.t

+ glRotatef(A, x, ¥, =] M~ MR
— rotate by angle e about axis [+ v, 2)

+ gli3calefis , 2, 5.1 M~ M5
- b E]
- scale by (5, 5y %)

Mote that OpenGl adds transformations by
postmultiplication of the modehriaw matrix,
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Summary

What totake away from this lecture:

*

*

All the names in boldface,
Heowe points and tran sformations are
reprasentead,

Howe to compute length s dot produ s and
cross producs of vectors, and what their
geometrical meanings are,

What all the elaments of a2 x 2 transformation
matrix do and how these generalizeto3x 3

tran sformations,

What homogeneous coordinates are and how
thev work for affine transformations,

Heww to concatenate tran sformation s,

The mathematical properties of affine
tran sformations,
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