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Reading

Required:

+ Angel 3.1,3.7-3.11

Further reading:

¢ Angel, the rest of Chapter 3
+ Foley, et al, Chapter 5.1-5.5.
+ David F. Rogers and J. Alan Adams,

Mathematical Elements for Computer Graphics
2 Ed., McGraw-Hill, New York, 1990, Chapter 2.

Geometric transformations

Geometric transformations will map points in one
space to points in another: (x' y* z’) =f

These transformations can be very simple, such as
scaling each coordinate, or complex, such as non-
linear twists and bends.

We'll focus on transformations that can be
represented easily with matrix operations.

Vector representation

We can represent a point, p = (x,y), in the plane or
p=(x,y,z) in 3D space

* as column vectors {X}
y

¢ asrow vectors [X y]
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Canonical axes

Vector length and dot products

Vector cross products

Representation, cont.

We can represent a 2-D transformation

matrix
a b
c d

iR

If isarow vector, mT
pl — pMT
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We will use column vectors




Two-dimensional transformations

M:
x' |a bl x
y'] e dly
So:
x'=ax+by
y'=cx+dy

We will develop some intimacy with the elements
abcd

Identity

a=d=1, b=c=0:

+ Gives the identity

o ]

+ Doesn't move the points at all

Scaling

Suppose we set b=c=0, but let a and d take on any
+ Gives ascaling

positive
a 0
0 d

¢ Provides differential (non-uniform) scaling
xandy: .
x'=ax

y'=dy

y %

Suppose we keep b=c=0, but let either a or d go
negative.

Examples:
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Now let's leave a=d=1 and experiment with b. ...

Effect on unit square

Let's see how a general 2 x 2 transformation  affects
the unit square:

The matrix
|:1 b} a b
0 1 L d}[p q r s|=[p' q r s
gives:
X'=x+by a bj[o 11 0] [0 a a+b b
y'=y c d||o0 01 1| |0 ¢ c+d d
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Effect on unit square, cont. Rotation

Observe:

¢ Origin invariant under M

¢ M can be determined just by knowing how the

corners (1,0) and (0,1) are mapped
+ aandd give x- and y-scaling
¢ band cgive x- and y-shearing
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From our observations of the effect on the unit
square, it should be easy to write down a matrix for
“rotation about the origin”:




Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

¢ Scaling

+ Rotation
+ Reflection
¢ Shearing

Q: What important operation does that leave out?
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Homogeneous coordinates

We can loft the problem up into 3-space, adding a
third component to every point:

H
-y
Y 1
w

homogenous coordinates

Then, transform with a 3 x 3 matrix:

10
0 1 12
00

... gives translation!

Affine transformations

The addition of translation to linear transformations
gives us affine transformations

In matrix form, 2D affine transformations always look
like this:

a bt
M=|c d t, ={ A t}
0 0 0 0|1

2D affine transformations always have a bottom row
of [001].

An “affine point” is a “linear point” with an added w-
coordinate which is always 1:

X

p.
Part { :n}= y
1

Applying an affine transformation gives another
affine point:

Rotation about arbitrary points

Until now, we have only considered rotation about
the origin.

With homogeneous coordinates, you can specify a
rotation, 6 about any point = [q, 9y 117 with a
matrix:

> 3>

1. Translate q
2. Rotate
3. Translate back

Note: Transformation order is important!!
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Points and vectors

Vectors have an additional coordinate of =0. Thus,
a change of origin has no effect on vectors.

Q: What happens if we multiply a vector by an affine
matrix?

These representations reflect some of the rules of
affine operations on points and vectors:

vector + vector —
scalar - vector —

point - point  —
point + vector —
point+point —

One useful combination of affine operations is:
p(t)=p, +tu

Q: What does this describe?
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Basic 3-D transformations: scaling

Some of the 3-D affine transformations are just like
the 2-D ones.

In this case, the bottom row is always [00 0 1].

For example, scaling:

'x7 [s, 0 0 0]x]
y' 0 s, 0 Oy
z| |0 0 s, 0|z
1] 10 0 0 11|

Yy
7 /

> T
z
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Translation in 3D

X' 1T 0 0 t, | x

y' 010ty

z| |00 1 ¢t,|z
1] 100 0 1 1]
¥y Yy
A :
Aeeerbe ) X - > X

4 Z
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Rotationin 3D

Rotation now has more possibilities in 3D:

1 0 0 0
0 cosa -sina O
0 sina cosa O
0 0 0 1
[cosp 0 sing 0

0 1 0 0
—-sing 0 0

0 0 0 1

[cosy —siny

0 0
0 0

00
siny cosy 0 O
10
i 0 1

A general rotation can be specified in terms of a
prodcut of these three matrices. How else might you
specify a rotation?
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Shearing in 3D

Shearing is also more complicated. Here is one
example:

Properties of affine transformations

Here are some useful properties of affine
transformations:

X' 1 b 0 0] x ¢ Lines map to lines
y' 010 0y ¢ Parallel lines remain parallel
= + Midpoints map to midpoints (in fact, ratios are
z 0 0 1 0}z always preserved)
1] 10 0 0 T]1]
pl
y % {
A 5. r
Tt
— 7
. A
7 z ratio — 1PAl _s _ [P'a]
lar| ¢ e
We call this a shear with respect to the x-z plane.
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Affine transformations in OpenGL Summary

OpenGL maintains a “modelview” matrix that holds the
M.

The modelview matrix is applied to points (usually
vertices of polygons) before drawing.

It is modified by commands including:

¢ glLoadIdentity () M«
- set M to identity

¢ glTranslatef(t,, t, t,) M« MT
- translate by (t, t,, t,)

¢ glRotatef(®, x, y, z) M <~ MR
- rotate by angle e about axis (x, y, z)

¢ glScalef(s g1 Sy M <« MS

- scale by (s, s,, s,)

S

x7!

postmultiplication
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What to take away from this lecture:

+ All the names in boldface.

+ How points and transformations are
represented.

+ How to compute lengths, dot products, and
cross products of vectors, and what their
geometrical meanings are.

+ What all the elements of a 2 x 2 transformation
matrix do and how these generalize to 3 x 3
transformations.

+ What homogeneous coordinates are and how
they work for affine transformations.

¢ How to concatenate transformations.

+ The mathematical properties of affine
transformations.
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