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Reading

Required:

 Angel and Shreiner, sections of Chapter 10: 
10.1.15, 10.4.2, 10.6.2, 10.7.3, 10.8.4, 
10.9.4.

Optional

 Bartels, Beatty, and Barsky.  An Introduction 
to Splines for use in Computer Graphics and 
Geometric Modeling, 1987.
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Mathematical surface 
representations
 Explicit:   z=f(x,y)  (a.k.a., a “height field”)

• what if the curve isn’t a function, like a sphere?
x2 + y2 + z2 = r2

 Implicit: g(x,y,z) = 0    g(x,y,z) = x2 + y2 + z2 - r2
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 Parametric:   S(u,v)=(x(u,v),y(u,v),z(u,v))
• For the sphere:

x(u,v) = r cos 2v sin u
y(u,v) = r sin 2v sin u
z(u,v) = r cos u

As with curves, we’ll focus on parametric surfaces.

Surfaces of revolution

Idea:  rotate a 2D profile curve around an axis.
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What kinds of shapes can you model this way?
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Constructing surfaces of 
revolution

Given: A curve C(u) in the xy-plane:

Let Ry() be a rotation about the y-axis.
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Find: A surface S(u,v) which is C(u) rotated 
about the y-axis.

Solution:

Isoparameter curves and 
tangents
We can follow curves where v is constant, and u
varies or vice versa.  These are called 
isoparameter curves (where one parameter is 
held constant):

If we sample at equal spacing in u and v, we can 
create a quadrilateral mesh (or a triangle mesh).

We can compute tangents to the surface at any 
point by looking at (infinitesimally) nearby points.  
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Holding one parameter constant, we can find 
nearby points by varying the other parameter.  
Thus, we can get two tangents:

How would we compute the normal?
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General sweep surfaces

The surface of revolution is a special case of a 
swept surface.

Idea:  Trace out surface S(u,v) by moving a 
profile curve C(u) along a trajectory curve T(v).

7

More specifically:

 Suppose that C(u) lies in an (xc,yc) 
coordinate system with origin Oc.

 For every point along T(v), lay C(u) so that 
Oc coincides with T(v).

The big issue:

 How to orient C(u) as it moves along T(v)?

Here are two options:

Orientation

1.  Fixed (or static):  Just translate Oc along T(v).
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2.  Moving.  Use the Frenet frame of T(v).

 Allows smoothly varying orientation.
 Permits surfaces of revolution, for example.
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Frenet frames

Motivation:  Given a curve T(v), we want to attach 
a smoothly varying coordinate system.

To get a 3D coordinate system, we need 3 
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g y ,
independent direction vectors.

As we move along T(v), the Frenet frame (t,b,n) 
varies smoothly.
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Frenet swept surfaces

Orient the profile curve C(u) using the Frenet 
frame of the trajectory T(v):

 Put C(u) in the normal plane .
 Place Oc on T(v).
 Align xc for C(u) with b.Align xc for C(u) with b.
 Align yc for C(u) with -n.
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If T(v) is a circle, you get a surface of revolution 
exactly!

Degenerate frames

Let’s look back at where we computed the 
coordinate frames from curve derivatives:

Where might these frames be ambiguous or 
undetermined?
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Variations

Several variations are possible:

 Scale C(u) as it moves, possibly using length 
of T(v) as a scale factor.

 Morph C(u) into some other curve as it 
moves along T(v).
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 …
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Tensor product Bézier surfaces
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Given a grid of control points Vij, forming a control 
net, construct a surface S(u,v) by:

 treating rows of V (the matrix consisting of the 
Vij) as control points for curves V0(u),…, Vn(u).

 treating V0(u),…, Vn(u) as control points for a 
curve parameterized by v.

Tensor product Bézier surfaces, 
cont.
Let’s walk through the steps:
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Which control points are interpolated by the 
surface?

Polynomial form of Bézier surfaces

Recall that cubic Bézier curves can be written in terms 
of the Bernstein polynomials:
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A tensor product Bézier surface can be written as:

In the previous slide, we constructed curves along u, 
and then along v.  This corresponds to re-grouping the 
terms like so:
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But, we could have constructed them along v, then u:
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Tensor product B-spline 
surfaces
As with spline curves, we can piece together a 
sequence of Bézier surfaces to make a spline 
surface.  If we enforce C2 continuity and local 
control, we get B-spline curves:
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 treat rows of B as control points to generate 
Bézier control points in u.

 treat Bézier control points in u as B-spline 
control points in v.

 treat B-spline control points in v to generate 
Bézier control points in u.
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Tensor product B-spline surfaces, 
cont.
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Which B-spline control points are interpolated by 
the surface?

Tensor product B-splines, cont.

Another example:

B00

B33

B30

B03
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NURBS surfaces

Uniform B-spline surfaces are a special case of 
NURBS surfaces.
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Trimmed NURBS surfaces

Sometimes, we want to have control over which 
parts of a NURBS surface get drawn.

For example:

We can do this by trimming the u-v domain.
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 Define a closed curve in the u-v domain (a 
trim curve)

 Do not draw the surface points inside of this 
curve.

It’s really hard to maintain continuity in these 
regions, especially while animating.
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Summary

What to take home:

 How to construct a surface of revolution
 How to construct swept surfaces from a 

profile and trajectory curve:
• with a fixed frame
• with a Frenet frame

 How to construct tensor product Bézier 
surfaces

 How to construct tensor product B-spline 
surfaces
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