
1

Hierarchical Modeling

Steven Tanimoto

Adapted from materials by Brian Curless and Daniel Leventhal

CSE 457
Spring 2012

1

Reading

Required:

 Angel, sections 8.1 – 8.6, 8.8 (Modeling and
Hierarchy: Symbols and Instances through
Animation, plus Scene Graphs.

Optional:Optional:

 Angel, sections 8.7, 8.9 – 8.11

 OpenGL Programming Guide, chapter 3

2

Symbols and instances

Most graphics APIs support a few geometric
primitives:

 spheres

 cubes

 cylinderscylinders

These symbols are instanced using an instance
transformation.

Q Wh t i th t i f th i t

3

Q: What is the matrix for the instance
transformation above?

3D Example: A robot arm

Consider this robot arm with 3 degrees of
freedom:

 Base rotates about its vertical axis by 
 Upper arm rotates in its xy-plane by 
 Lower arm rotates in its xy-plane by Lower arm rotates in its xy plane by 

(Note that the angles are set to zero in the figure;
i.e., the parts are shown in their “default”

h1

h2
h3

Base

Upper arm

Lower arm

  

4

positions.)

Q: What matrix do we use to transform the base?

Q: What matrix for the upper arm?

Q: What matrix for the lower arm?

2

An alternative interpretation is that we are taking
the original coordinate frames…

3D Example: A robot arm

Upper arm

Lower arm

…and translating and rotating them into place:

h1

h2
h3

Base

  

xLA yLA

zLA

5

yUA
xLA yLA

xUA

zUA

xB

yB

zB

Robot arm implementation

The robot arm can be displayed by keeping a global
matrix and computing it at each step:

Matrix M_model;

main()

{

. . .

robot_arm();

. . .

}

robot_arm()

{

M_model = R_y(theta);

base();

6

base();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi);

upper_arm();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi)

*T(0,h2,0)*R_z(psi);

lower_arm();

}

Do the matrix computations seem wasteful?

Instead of recalculating the global matrix each time, we
can just update it in place by concatenating matrices on
the right:

Matrix M_model;

main()

Robot arm implementation,
better

{

. . .

M_model = Identity();

robot_arm();

. . .

}

robot_arm()

{

M d l * R (th t)

7

M model *= R y(theta);

base();

M_model *= T(0,h1,0)*R_z(phi);

upper_arm();

M_model *= T(0,h2,0)*R_z(psi);

lower_arm();

}

OpenGL maintains a global state matrix called the
model-view matrix, which is updated by
concatenating matrices on the right.

main()

{

. . .

Robot arm implementation,
OpenGL

glMatrixMode(GL MODELVIEW);

glLoadIdentity();

robot_arm();

. . .

}

robot_arm()

{

glRotatef(theta, 0.0, 1.0, 0.0);

base();

8

glTranslatef(0.0, h1, 0.0);

glRotatef(phi, 0.0, 0.0, 1.0);

lower_arm();

glTranslatef(0.0, h2, 0.0);

glRotatef(psi, 0.0, 0.0, 1.0);

upper_arm();

}

3

Hierarchical modeling

Hierarchical models can be composed of
instances using trees or DAGs:

 edges contain geometric transformations

 nodes contain geometry (and possibly
drawing attributes)

9

How might we
draw the tree for
the robot arm?

A complex example: human
figure

10

Q: What’s the most sensible way to traverse this
tree?

Human figure implementation,
OpenGL

figure()

{

torso();

glPushMatrix();

glTranslate(...);

glRotate(...);

head();

glPopMatrix();

glPushMatrix();

glTranslate(...);

glRotate(...);

left_upper_arm();

glPushMatrix();

glTranslate(...);

glRotate(...);

left_lower_arm();

glPopMatrix();

glPopMatrix();

11

g p

. . .

}

Animation

The above examples are called articulated
models:

 rigid parts

 connected by joints

They can be animated by specifying the jointThey can be animated by specifying the joint
angles (or other display parameters) as functions
of time.

12

4

Key-frame animation

The most common method for character
animation in production is key-frame animation.

 Each joint specified at various key frames
(not necessarily the same as other joints)

 System does interpolation or in-betweeningy p g

Doing this well requires:

 A way of smoothly interpolating key frames:
splines

 A good interactive system

 A lot of skill on the part of the animator

13

Scene graphs

The idea of hierarchical modeling can be
extended to an entire scene, encompassing:

 many different objects

 lights

 camera positioncamera position

This is called a scene tree or scene graph.

Scene

Camera

Light1
Light2 Object1

Xform1

14

Object2
Object3

Geometry1

Materials1
Xform2

Xform3

.

.

.

.

.

.

Summary

Here’s what you should take home from this
lecture:

 All the boldfaced terms.

 How primitives can be instanced and
composed to create hierarchical models p
using geometric transforms.

 How the notion of a model tree or DAG can
be extended to entire scenes.

 How OpenGL transformations can be used
in hierarchical modeling.

 How keyframe animation works.

15

