
1

Affine Transformations

Steven Tanimoto

Adapted from materials by Brian Curless and Daniel Leventhal

CSE 457
Spring 2012

1

Reading

Required reading:

 Angel 3.1-3.11 (Geometric Objects and
Transformations: Scalars, Points, and
Vectors through Transformation Matrices in
OpenGL)

Optional reading:

 Angel 3.12-3.14

 Foley, et al, Chapter 5.1-5.5.

 David F. Rogers and J. Alan Adams,
Mathematical Elements for Computer
Graphics, 2nd Ed., McGraw-Hill, New York,
1990, Chapter 2.

2

Linear Interpolation

3

More Interpolation

4

2

Geometric transformations

Geometric transformations will map points in one
space to points in another: (x', y‘, z‘) = f (x, y, z).

These transformations can be very simple, such
as scaling each coordinate, or complex, such as
non-linear twists and bends.

We'll focus on transformations that can be
represented easily with matrix operations.

5

Vector representation

We can represent a point, p = (x,y), in the plane or
p=(x,y,z) in 3D space

 as column vectors x

y

 
 
 

x

y

 
 
 
  

 as row vectors  x y

z  

 x y z

6

Canonical axes

7

Vector length and dot products

8

3

Vector cross products

9

Inverse & Transpose

10

Representation, cont.

We can represent a 2-D transformation M by a
matrix

a b

c d

 
 
 

If p is a column vector, M goes on the left:

If p is a row vector, MT goes on the right:



     
     

     

'

'

M

x a b x

y c d y

p' p

11

We will use column vectors.

   ' '

TM

a c
x y x y

b d



 
  

 

p' p

Two-dimensional
transformations

Here's all you get with a 2 x 2 transformation
matrix M:

'

'

x a b x

y c d y

     
     

     

So:

We will develop some intimacy with the
elements a, b, c, d…

'

'

x ax by

y cx dy

 
 

12

4

Identity

Suppose we choose a=d=1, b=c=0:

 Gives the identity matrix:

1 0

0 1

 
 
 

 Doesn't move the points at all

0 1 

13

Scaling

Suppose we set b=c=0, but let a and d take on
any positive value:

 Gives a scaling matrix:
0

0

a

d

 
 
 

 Provides differential (non-uniform) scaling
in x and y:

 

'

'

x ax

y dy




2 0

0 2

 
 
 

1

2

1

2

y y

14

 
 
 

1 2 0

0 2

1 2 1 2

1

2

1 2

x x

x

y

Suppose we keep b=c=0, but let either a or d go
negative.

Examples:

1 0  1 0 1 0

0 1

 
 
 

1 0

0 1

 
  

15

Now let's leave a=d=1 and experiment with b. . . .

The matrix
1

0 1

b 
 
 

gives:

'

'

x x by

y y

 


 
 
1 1

y y

16

 
 
 0 11

1

1

1
x x

5

Effect on unit square

Let's see how a general 2 x 2 transformation M
affects the unit square:

   a b

c d

 
 

 
p q r s p' q' r' s'

0 1 1 0 0

0 0 1 1 0

a b a a b b

c d c c d d

 

     
          

17

Effect on unit square, cont.

Observe:

 Origin invariant under M

 M can be determined just by knowing how
the corners (1,0) and (0,1) are mapped

 a and d give x- and y-scalinga and d give x and y scaling

 b and c give x- and y-shearing

18

Rotation

From our observations of the effect on the unit
square, it should be easy to write down a matrix
for “rotation about the origin”:

y y


1

0

 
 

 

1

1

x x

19



Thus,

0

1

 
 

 


 
    
  

()M R

Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

 Scaling

 Rotation

 Reflection

 Shearing Shearing

Q: What important operation does that leave out?

20

6

Homogeneous coordinates
We can loft the problem up into 3-space, adding a
third component to every point:

1

x
x

y
y

 
          

Adding the third “w” component puts us in
homogenous coordinates.

Then, transform with a 3 x 3 matrix:

      
              
            

' 1 0

' () 0 1

' 1 10 0 1

x

y

x x xt

y y yT t

w

t

21
. . . gives translation!

 
 
 
  

1 0 1

0 1 1 2

0 0 1

Affine transformations

The addition of translation to linear
transformations gives us affine transformations.

In matrix form, 2D affine transformations always
look like this:

 b t

2D affine transformations always have a bottom
row of [0 0 1].

An “affine point” is a “linear point” with an added
w-coordinate which is always 1:

 
      
   
0 0 1

0 0 1

x

y

a b t

M c d t
A t

22

Applying an affine transformation gives another
affine point:

 
           

lin
aff 1

1

x

y
p

p

lin
aff 1

A
M

 
  
 

p t
p

Rotation about arbitrary points

Until now, we have only considered rotation about
the origin.

With homogeneous coordinates, you can specify
a rotation, , about any point q = [qx qy 1]T with a
matrix:matrix:

23

1. Translate q to origin

2. Rotate

3. Translate back

Note: Transformation order is important!!

Points and vectors
Vectors have an additional coordinate of w=0.
Thus, a change of origin has no effect on vectors.

Q: What happens if we multiply a vector by an
affine matrix?

These representations reflect some of the rules of
affine operations on points and vectors:

vector + vector

 scalar vector

 point - point

 point + vector

 point + point


 





24

One useful combination of affine operations is:

Q: What does this describe?

 () ot tp p u

7

Basic 3-D transformations:
scaling

Some of the 3-D affine transformations are just
like the 2-D ones.

In this case, the bottom row is always [0 0 0 1].

For example, scaling:p , g

' 0 0 0

' 0 0 0

' 0 0 0

1 0 0 0 1 1

x

y

z

x s x

y s y

z s z

     
     
     
     
     
     

25

Translation in 3D

' 1 0 0

' 0 1 0

' 0 0 1

1 0 0 0 1 1

x

y

z

x t x

y t y

z t z

     
     
     
     
     
     1 0 0 0 1 1
     
     

26

Rotation now has more possibilities in 3D:

Rotation in 3D

 


 

 
  
 
 

1 0 0 0

0 cos sin 0
()

0 sin cos 0xR

 


 

 
 



 
 
 
 
 
 
 
 

 
 
 
 
 
 

0 0 0 1

cos 0 sin 0

0 1 0 0
()

sin 0 cos 0

0 0 0 1

cos sin 0 0

sin cos 0 0
()

0 0 1 0

0 0 0 1

y

z

R

R

xR

yR

zR

Use right hand rule

27

A general rotation can be specified in terms of a
prodcut of these three matrices. How else might
you specify a rotation?

 0 0 0 1

Shearing in 3D

Shearing is also more complicated. Here is one
example:

' 1 0 0

' 0 1 0 0

x b x

y y

     
     
     
     ' 0 0 1 0

1 0 0 0 1 1

z z     
     
     

28

We call this a shear with respect to the x-z plane.

8

Properties of affine
transformations

Here are some useful properties of affine
transformations:

 Lines map to lines

 Parallel lines remain parallel

 Midpoints map to midpoints (in fact, ratiosMidpoints map to midpoints (in fact, ratios
are always preserved)



29

  ratio
s

t

pq p'q'

qr q'r'

Affine transformations in
OpenGL

OpenGL maintains a “modelview” matrix that holds
the current transformation M.

The modelview matrix is applied to points (usually
vertices of polygons) before drawing.

It i difi d b d i l diIt is modified by commands including:

 glLoadIdentity() M  I

– set M to identity

 glTranslatef(tx, ty, tz) M  MT

– translate by (tx, ty, tz)

 glRotatef(θ, x, y, z) M  MR

– rotate by angle θ about axis (x, y, z)

30

 glScalef(sx, sy, sz) M  MS

– scale by (sx, sy, sz)

Note that OpenGL adds transformations by
postmultiplication of the modelview matrix.

Summary

What to take away from this lecture:

 All the names in boldface.

 How points and transformations are
represented.

 How to compute lengths, dot products, andHow to compute lengths, dot products, and
cross products of vectors, and what their
geometrical meanings are.

 What all the elements of a 2 x 2
transformation matrix do and how these
generalize to 3 x 3 transformations.

 What homogeneous coordinates are and
how they work for affine transformations.

 How to concatenate transformations.

 The mathematical properties of affine

31

p p
transformations.

