
1

Shading

Brian Curless
CSE 457

Autumn 2010

2

Reading

Required:

Angel 6.1-6.5, 6.7-6.8, 9.1-9.10

Optional:

OpenGL red book, chapter 5.
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Introduction

So far, we’ve talked exclusively about geometry.

What is the shape of an object?

How do I place it in a virtual 3D space?

How do I know which pixels it covers?

How do I know which of the pixels I should 
actually draw?

Once we’ve answered all those, we have to ask one 
more important question:

To what value do I set each pixel?

Answering this question is the job of the shading 
model.

Other names:

Lighting model

Light reflection model

Local illumination model

Reflectance model

BRDF
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Our problem

Modeling the flow of light in a scene is very complex: 
photons pour out of light sources and bounce 
around and around before reaching a camera.

Here we focus on local illumination, i.e., what 
happens for a single bounce: 

light source → surface → viewer

No interreflections, no shadows.

We’re going to explore two models: the Phong and
Blinn-Phong illumination models.

They have the following characteristics:

physically plausible (albeit not strictly correct)

very fast

widely used
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Setup…

Given:

a point P on a surface visible through pixel p
The normal N at P
The lighting direction, L, and (color) intensity, IL, 
at P
The viewing direction, V, at P
The shading coefficients at P

Compute the color, I,  of pixel p.

Assume that the direction vectors are normalized:

= = =N L V 1
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“Iteration zero”

The simplest thing you can do is…

Assign each polygon a single color:

where

I is the resulting intensity

ke is the emissivity or intrinsic shade associated 
with the object

This has some special-purpose uses, but not really 
good for drawing a scene.

[Note: ke is omitted in Angel.]

eI = k
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“Iteration one”

Let’s make the color at least dependent on the 
overall quantity of light available in the scene:

ka is the ambient reflection coefficient.
• really the reflectance of ambient light

• “ambient” light is assumed to be equal in all 
directions

ILa is the ambient light intensity.

Physically, what is “ambient” light?

[Note: Angel uses  La instead of ILa.]

e a LaI k k I= +
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Wavelength dependence

Really, ke, ka, and ILa are functions over all 
wavelengths λ.

Ideally, we would do the calculation on these 
functions.  For the ambient shading equation, we 
would start with:

then we would find good RGB values to represent the 
spectrum I(λ).

Traditionally, though, ka and ILa are represented as 
RGB triples, and the computation is performed on 
each color channel separately:

λ λ λa LaI = k I( ) ( ) ( )

R R R
a La

G G G
a La

B B B
a La

I = k  I
I = k  I
I = k  I
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Diffuse reflection

Let’s examine the ambient shading model:

objects have different colors

we can control the overall light intensity
• what happens when we turn off the lights?

• what happens as the light intensity increases?

• what happens if we change the color of the 
lights?

So far, objects are uniformly lit.

not the way things really appear

in reality, light sources are localized in position 
or direction

Diffuse, or Lambertian reflection will allow reflected 
intensity to vary with the direction of the light.
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Diffuse reflectors

Diffuse reflection occurs from dull, matte surfaces, 
like latex paint, or chalk.

These diffuse or Lambertian reflectors reradiate 
light equally in all directions.

Picture a rough surface with lots of tiny microfacets.
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Diffuse reflectors

…or picture a surface with little pigment particles 
embedded beneath the surface (neglect reflection at 
the surface for the moment):

The microfacets and pigments distribute light rays in 
all directions.

Embedded pigments are responsible for the 
coloration of diffusely reflected light in plastics and 
paints.

Note: the figures above are intuitive, but not strictly 
(physically) correct.
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Diffuse reflectors, cont.

The reflected intensity from a diffuse surface does 
not depend on the direction of the viewer.  The 
incoming light, though, does depend on the 
direction of the light source:
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“Iteration two”

The incoming energy is proportional to , giving 
the diffuse reflection equations:

where:

kd is the diffuse reflection coefficient

IL is the (color) intensity of the light source

N is the normal to the surface (unit vector)

L is the direction to the light source (unit 
vector)

B prevents contribution of light from below the 
surface:

[Note: Angel uses  Ld instead of IL and f instead of B]

_____B

B

e a La d L

e a La d L

I = k + k I + k I

= k + k I + k I (        )

1 if 

0 if 

⋅ >⎧
⎨ ⋅ ≤⎩

B =
N L 0
N L 0
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Specular reflection

Specular reflection accounts for the highlight that 
you see on some objects.

It is particularly important for smooth, shiny surfaces, 
such as:

metal

polished stone

plastics

apples

skin

Properties:

Specular reflection depends on the viewing 
direction V.  

For non-metals, the color is determined solely 
by the color of the light.

For metals, the color may be altered (e.g., brass)
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Specular reflection “derivation”

For a perfect mirror reflector, light is reflected about 
N, so

For a near-perfect reflector, you might expect the 
highlight to fall off quickly with increasing angle φ.

Also known as:

“rough specular” reflection

“directional diffuse” reflection

“glossy” reflection

if 

0 otherwise
LII

=⎧
= ⎨
⎩

V R
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Phong specular reflection

One way to get this effect is to take (R·V), raised to a 
power ns.

As ns gets larger,

the dropoff becomes {more,less} gradual

gives a {larger,smaller} highlight

simulates a {more,less} mirror-like surface

Phong specular reflection is proportional to:

where (x)+ ≡ max(0, x).
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Blinn-Phong specular reflection

A common alternative for specular reflection is the 
Blinn-Phong model (sometimes called the modified 
Phong model.)

We compute the vector halfway between L and V as:

Analogous to Phong specular reflection, we can 
compute the specular contribution in terms of (N·H), 
raised to a power ns:

where, again, (x)+ ≡ max(0, x).

specular B += ⋅N H snI ( )
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“Iteration three”

The next update to the Blinn-Phong shading model is 
then:

where:

ks is the specular reflection coefficient

ns is the specular exponent or shininess

H is the unit halfway vector between L and V, 
where V is the viewing direction.

[Note: Angel uses α instead of ns, and maintains a 
separate Ld and Ls, instead of a single IL.  This choice 
reflects the flexibility available in OpenGL.]

L L

L

B B

B

I I

I

⋅ ⋅

⎡ ⎤= ⋅ ⋅⎣ ⎦

H

H
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s

e a La d s

e a La d s

n

n

I = k + k I + k + k
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Directional lights

OpenGL supports three different kinds of lights:  
ambient, directional, and point.  Spot lights are also 
supported as a special form of point light.

We’ve seen ambient light sources, which are not 
really geometric.

Directional light sources have a single direction and 
intensity associated with them.

Using affine notation, what is the homogeneous 
coordinate for a directional light?
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Point lights

The direction of a point light sources is determined 
by the vector from the light position to the surface 
point.

Physics tells us the intensity must drop off inversely 
with the square of the distance:

Sometimes, this distance-squared dropoff is 
considered too “harsh.” A common alternative is:

with user-supplied constants for a, b, and c.

Using affine notation, what is the homogeneous 
coordinate for a point light?

E - P
L =

E - P

r = E - P

atten
1

f = 2a+ br + cr

atten
1

f = 2r
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Spotlights

OpenGL also allows one to apply a directional 
attenuation of a point light source, giving a spotlight
effect.

The spotlight intensity factor is computed in OpenGL 
as:

where

L is the direction to the point light.
S is the center direction of the spotlight.

β is the cutoff angle for the spotlight
e is the angular falloff coefficient

( )β⋅f =
spot

e
L S

( ) ( ){ }β β⎡ ⎤= −⎣ ⎦max acos ,  0e e
x x
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“Iteration four”

Since light is additive, we can handle multiple lights 
by taking the sum over every light.

Our equation is now (for point lights):

This is the Blinn-Phong illumination model.

Which quantities are spatial vectors?  

Which are RGB triples?

Which are scalars?

( ) ( )1
B

r r
⎡ ⎤⋅ ⋅
⎣ ⎦∑ N H

s

e a La

n
L, j j d j s j2 +

j j j j j j

I = k + k I +

I k + k
a + b + c

N L
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Choosing the parameters

Experiment with different parameter settings.  To get 
you started, here are a few suggestions:

Try ns in the range [0,100]

Try ka + kd + ks < 1

Use a small ka (~0.1)

0varying0Planet

Medium, 
white

Medium, 
color of 
plastic

mediumPlastic

Large, color 
of metal

Small, color 
of metal

largeMetal

kskdns
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Materials in OpenGL

The OpenGL code to specify the surface shading 
properties is fairly straightforward.  For example:

GLfloat ke[] = { 0.1, 0.15, 0.05, 1.0 };
GLfloat ka[] = { 0.1, 0.15, 0.1, 1.0 };
GLfloat kd[] = { 0.3, 0.3, 0.2, 1.0 };
GLfloat ks[] = { 0.2, 0.2, 0.2, 1.0 };
GLfloat ns[] = { 50.0 };
glMaterialfv(GL_FRONT, GL_EMISSION, ke);  
glMaterialfv(GL_FRONT, GL_AMBIENT, ka);  
glMaterialfv(GL_FRONT, GL_DIFFUSE, kd);  
glMaterialfv(GL_FRONT, GL_SPECULAR, ks);  
glMaterialfv(GL_FRONT, GL_SHININESS, ns);

Notes: 

The GL_FRONT parameter tells OpenGL that we 
are specifiying the materials for the front of the 
surface.  

Only the alpha value of the diffuse color is used 
for blending.  It’s usually set to 1.
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Shading in OpenGL

The OpenGL lighting model allows you to associate 
different lighting colors according to material 
properties they  will influence.  

Thus, our original shading equation:

becomes:

where you can have a global ambient light with 
intensity ILa in addition to having an ambient light 
intensity ILa,j associated with each individual light, as 
well as separate diffuse and specular intensities, ILd,j
and ILs,j, repectively.

{ }1
B

r r
⎡ ⎤⋅ ⋅⎣ ⎦∑ s

e a La

n
a La, j j d Ld, j j + s Ls, j j +2

j j j j j j

I = k + k I +

k I + k I + k I
a + b + c

( ) ( )N L N H

( ) ( )1
B

r r
⎡ ⎤⋅ ⋅
⎣ ⎦∑ N H

s

e a La

n
L, j j d j s j2 + +

j j j j j j

I = k + k I +

I k + k
a + b + c

N L
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Shading in OpenGL, cont’d

In OpenGL this equation, for one light source (the 0th) is 
specified something like:

GLfloat La[] = { 0.2, 0.2, 0.2, 1.0 }; 
GLfloat La0[] = { 0.1, 0.1, 0.1, 1.0 }; 
GLfloat Ld0[] = { 1.0, 1.0, 1.0, 1.0 }; 
GLfloat Ls0[] = { 1.0, 1.0, 1.0, 1.0 }; 
GLfloat pos0[] = { 1.0, 1.0, 1.0, 0.0 }; 
GLfloat a0[] = { 1.0 }; 
GLfloat b0[] = { 0.5 }; 
GLfloat c0[] = { 0.25 };
GLfloat S0[] = { -1.0, -1.0, 0.0 }; 
GLfloat beta0[] = { 45 };
GLfloat e0[] = { 2 };

glLightModelfv(GL_LIGHT_MODEL_AMBIENT, La);
glLightfv(GL_LIGHT0, GL_AMBIENT, La0); 
glLightfv(GL_LIGHT0, GL_DIFFUSE, Ld0);
glLightfv(GL_LIGHT0, GL_SPECULAR, Ls0); 
glLightfv(GL_LIGHT0, GL_POSITION, pos0);
glLightfv(GL_LIGHT0, GL_CONSTANT_ATTENUATION, a0);
glLightfv(GL_LIGHT0, GL_LINEAR_ATTENUATION, b0);
glLightfv(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, c0);
glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, S0);
glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, beta0);
glLightf(GL_LIGHT0, GL_SPOT_EXPONENT, e0);
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Shading in OpenGL, cont’d

Notes:

You can have as many as GL_MAX_LIGHTS lights in a 
scene.  This number is system-dependent. 

For directional lights, you specify a light direction, 
not position, and the attenuation and spotlight terms 
are ignored.

The directions of directional lights and spotlights are 
specified in the coordinate systems of the lights, not 
the surface points as we’ve been doing in lecture.
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BRDF
The diffuse+specular parts of the Blinn-Phong
illumination model are a mapping from light to 
viewing directions:

The mapping function fr is often written in terms of 
incoming (light) directions ωin and outgoing 
(viewing) directions ωout:

This function is called the Bi-directional Reflectance 
Distribution Function (BRDF).

Here’s a plot with ωin held constant:

BRDF’s can be quite sophisticated…

( , ()     or     )out outin inr rf fω ω ω ω→

( , )outinrf ω ω
ωin

 ( , )

L

L r

B

f

I

I

+

⎡ ⎤⎛ ⎞+⎢ ⎥⋅ ⋅⎜ ⎟
+⎢ ⎥⎝ ⎠⎣ ⎦

=

L V

L V

L V

s

d s

n

I = k + k( )N L N
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More sophisticated BRDF’s

Anisotropic BRDFs [Westin, Arvo, Torrance 1992]

[Cook and Torrance, 1982]

Artistics BRDFs [Gooch]
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Gouraud vs. Phong interpolation

Now we know how to compute the color at a point 
on a surface using the Blinn-Phong lighting model.

Does graphics hardware do this calculation at every 
point?  Not by default...

Smooth surfaces are often approximated by 
polygonal facets, because:

Graphics hardware generally wants polygons 
(esp. triangles).

Sometimes it easier to write ray-surface 
intersection algorithms for polygonal models.

How do we compute the shading for such a surface?
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Faceted shading

Assume each face has a constant normal:

For a distant viewer and a distant light source and 
constant material properties over the surface, how 
will the color of each triangle vary?

Result: faceted, not smooth, appearance.
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Faceted shading (cont’d)

[Williams and Siegel 1990]
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Gouraud interpolation

To get a smoother result that is easily performed in 
hardware, we can do Gouraud interpolation.

Here’s how it works:

1. Compute normals at the vertices.

2. Shade only the vertices.

3. Interpolate the resulting vertex colors.
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Rasterization with color

Recall that the z-buffer works by interpolating z-
values across a triangle that has been projected into 
image space, a process called rasterization.

During rasterization, colors can be smeared across a 
triangle as well:
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Facted shading vs. Gouraud interpolation

[Williams and Siegel 1990] 36

Gouraud interpolation artifacts

Gouraud interpolation has significant limitations.

1. If the polygonal approximation is too coarse, we 
can miss specular highlights.

2. We will encounter Mach banding (derivative 
discontinuity enhanced by human eye).

This is what graphics hardware does by default.

A substantial improvement is to do…
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Phong interpolation

To get an even smoother result with fewer artifacts, 
we can perform Phong interpolation.

Here’s how it works:

1. Compute normals at the vertices.

2. Interpolate normals and normalize.

3. Shade using the interpolated normals.
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Gouraud vs. Phong interpolation

[Williams and Siegel 1990]
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Default pipeline: Gouraud interpolation

→ triangle1 2 3, ,i i iv v v

Default fragment processing:

Vertex 
processor

Rasterizer

Fragment
processor

Primitive
assembler

attach cphong to vertex as “varying”
vi ← project v to image

phong shade with , , , , ,d s sc L V N k k n←

 determine lighting directionL←
determine viewing directionV ←
normalize( )eN n←

Default vertex processing:

phongcolor pc←
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Vertex shader:
attach ne to vertex as “varying”
attach ve to vertex as “varying”
vi ← project v to image

Programmable pipeline: 
Phong-interpolated normals!

Vertex 
processor

Rasterizer

Fragment
processor

Primitive
assembler

→ triangle1 2 3, ,i i iv v v

Fragment shader:

color shade with , , , , ,p p p
d s sL V N k k n←

normalize( )p
eN n←

 determine lighting directionL ←
determine viewing directionV ←
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Summary

The most important thing to take away from this 
lecture is the equation for the Blinn-Phong lighting 
model described in the “Iteration Four” slide.

What is the physical meaning of each variable?

How are the terms computed?

What effect does each term contribute to the 
image?

What does varying the parameters do?

You should also understand the differences between 
faceted, Gouraud, and Phong interpolated shading.


