Parametric surfaces

Reading

Required:

- Angel readings for "Parametric Curves" lecture, with emphasis on 10.1.2, 10.1.3, 10.1.5, 10.6.2, 10.7.3.

Optional

- Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric Modeling, 1987.

Mathematical surface representations

- Explicit $z=f(x, y)$ (a.k.a., a "height field")
- what if the curve isn't a function, like a sphere?

- Implicit $g(x, y, z)=0$
- Parametric $S(u, v)=\left(x(u, v), y(u, v), \bar{z}^{\prime \cdots \cdots} \mathcal{z}^{\prime}\right.$
- For the sphere:
$x(u, v)=r \cos 2 \pi v \sin \pi u$
$\mathrm{y}(u, v)=r \sin 2 \pi v \sin \pi u$
$z(u, v)=r \cos \pi u$

As with curves, we'll focus on parametric surfaces.

Constructing surfaces of revolution

Given: A curve $C(u)$ in the $x y$-plane:

$$
\alpha(u)=\left[\begin{array}{c}
c_{x}(u) \\
c_{y}(u) \\
0 \\
1
\end{array}\right]
$$

Let $R_{x}(\theta)$ be a rotation about the x-axis.
Find: A surface $S(u, v)$ which is $C(u)$ rotated about the x-axis.

Solution:

Orientation

The big issue:

- How to orient $C(u)$ as it moves along $T(v)$?

Here are two options:

1. Fixed (or static): Just translate O_{c} along $T(v)$.

2. Moving. Use the Frenet frame of $T(v)$.

- Allows smoothly varying orientation.
- Permits surfaces of revolution, for example.

General sweep surfaces

The surface of revolution is a special case of a swept surface.

Idea: Trace out surface $S(u, v)$ by moving a profile curve $C(u)$ along a trajectory curve $T(v)$.

More specifically:

- Suppose that $C(u)$ lies in an $\left(x_{c}, y_{c}\right)$ coordinate system with origin O_{c}.
- For every point along $T(v)$, lay $C(u)$ so that O_{c} coincides with $T(v)$.

Frenet frames

Motivation: Given a curve $T(v)$, we want to attach a smoothly varying coordinate system.

To get a 3D coordinate system, we need 3 independent direction vectors.

$$
\begin{aligned}
& \mathbf{t}(v)=\text { normalize }\left[T^{\prime}(v)\right] \\
& \mathbf{b}(v)=\text { normalize }\left[T^{\prime}(v) \times T^{\prime}(v)\right] \\
& \mathbf{n}(v)=\mathbf{b}(v) \times \mathbf{t}(v)
\end{aligned}
$$

As we move along $T(v)$, the Frenet frame (t, b, n) varies smoothly.

Frenet swept surfaces

Orient the profile curve $C(u)$ using the Frenet frame of the trajectory $T(v)$:

- Put $C(u)$ in the normal plane .
- Place O_{c} on $T(v)$.
- Align x_{c} for $C(u)$ with \mathbf{b}.
- Align y_{c} for $C(u)$ with -n.

If $T(v)$ is a circle, you get a surface of revolution exactly!

What happens at inflection points, i.e., where curvature goes to zero?

Variations

Several variations are possible:

- Scale $C(u)$ as it moves, possibly using length of $T(v)$ as a scale factor.
- Morph $C(u)$ into some other curvẽ (u) as it moves along $T(v)$.
- ...

Tensor product Bézier surfaces

Given a grid of control points $V_{i j}$, forming a control net, contruct a surface $S(u, v)$ by:

- treating rows of V (the matrix consisting of the $V_{i j}$) as control points for curves $V_{0}(u), \ldots, V_{n}(u)$.
- treating $V_{0}(u), \ldots, V_{n}(u)$ as control points for a curve parameterized by v.

Tensor product B-spline surfaces

As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C^{2} continuity and local control, we get B-spline curves:

- treat rows of B as control points to generate Bézier control points in u.
- treat Bézier control points in u as B-spline control points in v.
- treat B-spline control points in v to generate Bézier control points in u.

Tensor product B-splines, cont.
Another example:

Summary

What to take home:

- How to construct swept surfaces from a profile and trajectory curve:
- with a fixed frame
- with a Frenet frame
- How to construct tensor product Bézier surfaces
- How to construct tensor product B-spline surfaces

