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Parametric curves
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Reading

Required:

� Angel 10.1-10.3, 10.5.2, 10.6-10.7

Optional

� Bartels, Beatty, and Barsky.  An Introduction
to Splines for use in Computer Graphics and
Geometric Modeling, 1987.

� Farin. Curves and Surfaces for CAGD:  A
Practical Guide, 4th ed., 1997.
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Curves before computers

The “loftsman’s spline”:

� long, narrow strip of wood or metal
� shaped by lead weights called “ducks”
� gives curves with second-order continuity,

usually

Used for designing cars, ships, airplanes, etc.

But curves based on physical artifacts can’t be
replicated well, since there’s no exact definition of
what the curve is.

Around 1960, a lot of industrial designers were
working on this problem.

Today, curves are easy to manipulate on a
computer and are used for CAD, art, animation,
…
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Mathematical curve
representation
� Explicit   y=f(x)

• what if the curve isn’t a function, e.g., a circle?

� Implicit   g(x,y) = 0

� Parametric   (x(u),y(u))
• For the circle:
       x(u) = r⋅cos 2πu
       y(u) = r⋅sin 2πu
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Parametric polynomial curves

We’ll use parametric curves, Q(u)=(x(u),y(u)),
where the functions are all polynomials in the
parameter.

Advantages:

� easy (and efficient) to compute
� infinitely differentiable

We’ll also assume that u varies from 0 to 1.
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Recursive interpolation:

What if u=0?

What if u=1?

de Casteljau’s algorithm

cse457-15-curves 7

Recursive notation:

What is the equation for        ?

de Casteljau’s algorithm, cont’d

1
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Finding Q(u)

Let’s solve for Q(u):
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Finding Q(u)   (cont’d)

In general,

where “n choose i” is:

This defines a class of curves called Bézier
curves.

What’s the relationship between the number of
control points and the degree of the polynomials?
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Bernstein polynomials

The coefficients of the control points are a set of
functions called the Bernstein polynomials:

For degree 3, we have:

Useful properties on the interval [0,1]:

� each is between 0 and 1
� sum of all four is exactly 1 (a.k.a., a “partition

of unity”)

These together imply that the curve lies within the
convex hull of its control points.
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Displaying Bézier curves

How could we draw one of these things?

It would be nice if we had an adaptive algorithm,
that would take into account flatness.

DisplayBezier( V0, V1, V2, V3 )

begin
       if ( FlatEnough( V0, V1, V2, V3 ) )
              Line( V0, V3 );
       else
              something;
end;
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Subdivide and conquer

DisplayBezier( V0, V1, V2, V3 )

begin
       if ( FlatEnough( V0, V1, V2, V3 ) )
              Line( V0, V3 );
       else
               Subdivide(V[]) ⇒ L[], R[]
              DisplayBezier( L0, L1, L2, L3 );
              DisplayBezier( R0, R1, R2, R3 );
end;
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Testing for flatness

Compare total length of control polygon to length
of line connecting endpoints:
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Curve desiderata

Bézier curves offer a fairly simple way to model
parametric curves.

But, let’s consider some general properties we
would like curves to have…
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Local control

One problem with Béziers is that every control
point affects every point on the curve (except the
endpoints).

Moving a single control point affects the whole
curve!

We’d like to have local control, that is, have each
control point affect some well-defined
neighborhood around that point.
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Interpolation

Bézier curves are approximating.  The curve
does not (necessarily) pass through all the control
points.  Each point pulls the curve toward it, but
other points are pulling as well.

We’d like to have a curve that is interpolating,
that is, that always passes through every control
point.
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Continuity

We want our curve to have continuity: there
shouldn’t be any abrupt changes as we move
along the curve.

There are nested degrees of continuity:

C-1: C0:

C1, C2 : C3, C4, …:
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Bézier curves ���� splines

Bézier curves have C-infinity continuity on their
interiors, but we saw that they do not exhibit local
control or interpolate their control points.

It is possible to define points that we want to
interpolate, and then solve for the Bézier control
points that will do the job.

But, you will need as many control points as
interpolated points -> high order polynomials ->
wiggly curves.  (And you still won’t have local
control.)

Instead, we’ll splice together a curve from
individual Béziers segments, in particular, cubic
Béziers.

We call these curves splines.  When splicing
Béziers together, the first thing we need to worry
about is continuity where one curve segment
meets the next…
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Ensuring C0 continuity

Suppose we have a cubic Bézier defined by
(V0,V1,V2,V3), and we want to attach another
curve (W0,W1,W2,W3) to it, so that there is C0

continuity at the joint.

What constraint(s) does this place on
(W0,W1,W2,W3)?

=0 : (1) (0)V WC Q Q
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The C0 Bezier spline

How then could we construct a curve passing
through a set of points P1…Pn?

We call this curve a spline.  The endpoints of the
Bezier segments are called joints.

In the animator project, you will construct such a
curve by specifying all the Bezier control points
directly.
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For degree 3 (cubic) curves, we have already
shown that we get:

We can expand the terms in u and rearrange to
get:

What then is the first derivative when evaluated at
each endpoint, u=0 and u=1?

1st derivatives at the endpoints
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Ensuring C1 continuity

Suppose we have a cubic Bézier defined by
(V0,V1,V2,V3), and we want to attach another
curve (W0,W1,W2,W3) to it, so that there is C1

continuity at the joint.

What constraint(s) does this place on
(W0,W1,W2,W3)?
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The C1 Bezier spline

How then could we construct a curve passing
through a set of points P1…Pn?

We can specify the Bezier control points directly,
or we can devise a scheme for placing them
automatically…
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Catmull-Rom splines

If we set each derivative to be one half of the
vector between the previous and next controls, we
get a Catmull-Rom spline.

This leads to:
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We can give more control by exposing the
derivative scale factor as a parameter:

The parameter τ controls the tension.  Catmull-
Rom uses τ = 1/2.  Here’s an example with τ =3/2.

Tension control
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2nd derivatives at the endpoints

Finally, we’ll want to develop C2 splines.  To do
this, we’ll need second derivatives of Bezier
curves.

Taking the second derivative of Q(u) yields:
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Ensuring C2 continuity

Suppose we have a cubic Bézier defined by
(V0,V1,V2,V3), and we want to attach another
curve (W0,W1,W2,W3) to it, so that there is C2

continuity at the joint.

What constraint(s) does this place on
(W0,W1,W2,W3)?
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Building a complex spline

Instead of specifying the Bézier control points
themselves, let’s specify the corners of the A-
frames in order to build a C2 continuous spline.

These are called B-splines.  The starting set of
points are called de Boor points.
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B-splines

Here is the completed B-spline.

What are the Bézier control points, in terms of the
de Boor points?
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Endpoints of B-splines

We can see that B-splines don’t interpolate the de
Boor points.

It would be nice if we could at least control the
endpoints of the splines explicitly.

There’s a trick to make the spline begin and end
at control points by repeating them.

In the example below, let’s force interpolation of
the last endpoint:

0 1 2 3 4 5B B B B B B
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What if we want a closed curve, i.e., a loop?

With Catmull-Rom and B-spline curves, this is
easy:

Closing the loop
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In the animator project, you will draw a curve on
the screen:

You will actually treat this curve as:

Where θ  is a variable you want to animate.  We
can think of the result as a function:

In general, you have to apply some constraints to
make sure that θ(t) actually is a function.

Curves in the animator project
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One of the extra credit options in the animator
project is to implement “wrapping” so that the
animation restarts smoothly when looping back to
the beginning.

This is a lot like making a closed curve: the
calculations for the θ -coordinate are exactly the
same.

The t-coordinate is a little trickier: you need to
create “phantom” t-coordinates before and after
the first and last coordinates.

“Wrapping”
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Summary

What to take home from this lecture:

� Geometric and algebraic definitions of Bézier
curves.

� Basic properties of Bézier curves.
� How to display Bézier curves with line

segments.
� Meanings of Ck continuities.
� Geometric conditions for continuity of cubic

splines.
� Properties of B-splines and Catmull-Rom

splines.
� Geometric construction of B-splines and

Catmull-Rom splines.
� How to construct closed loop splines.


