
cse457-07-hierarchical 1

Hierarchical Modeling

cse457-07-hierarchical 2

Reading

Required:

� Angel, sections 9.1 – 9.6, 9.8

Optional:

� OpenGL Programming Guide, the Red Book,
chapter 3

cse457-07-hierarchical 3

Most graphics APIs support a few geometric
primitives:

� spheres, cubes, cylinders
� these procedures define points for you, but they're still

just points P

These symbols are instanced using an instance
transformation.

� the points are originally defined in a local coordinate
system (eg, unit cube)

Q: What is the matrix for the instance transformation
above?

Symbols and instances

points to
draw

scaled

SPRSP

rotated

TRSP

translated

P

cse457-07-hierarchical 4

cse457-07-hierarchical 5

Connecting primitives

P P

cse457-07-hierarchical 6

3D Example: A robot arm

Consider this robot arm with 3 degrees of
freedom:

� Base rotates about its vertical axis by θ
� Lower arm rotates in its xy-plane by φ
� Upper arm rotates in its xy-plane by ψ

Q: What matrix do we use to transform the base?

Q: What matrix for the upper arm?

Q: What matrix for the lower arm?

h1

h2 h3

Base

Upper arm
Lower arm

cse457-07-hierarchical 7 cse457-07-hierarchical 8

Robot arm implementation

The robot arm can be displayed by keeping a global
matrix and computing it at each step:

Matrix M_model;

main()

{

. . .

robot_arm();

. . .

}

robot_arm()

{

M_model = R_y(theta);

base();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi);

lower_arm();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi)

*T(0,h2,0)*R_z(psi);

upper_arm();

}

Do the matrix computations seem a tad wasteful?

cse457-07-hierarchical 9

Instead of recalculating the global matrix each time, we
can just update it in place by concatenating matrices on
the right:

Matrix M_model;

main()

{

. . .

M_model = Identity();

robot_arm();

. . .

}

robot_arm()

{

M_model *= R_y(theta);

base();

M_model *= T(0,h1,0)*R_z(phi);

lower_arm();

M_model *= T(0,h2,0)*R_z(psi);

upper_arm();

}

Robot arm implementation,
better

cse457-07-hierarchical 10

OpenGL maintains a global state matrix called the
model-view matrix, which is updated by
concatenating matrices on the right.
main()

{

. . .

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

robot_arm();

. . .

}

robot_arm()

{

glRotatef(theta, 0.0, 1.0, 0.0);

base();

glTranslatef(0.0, h1, 0.0);

glRotatef(phi, 0.0, 0.0, 1.0);

lower_arm();

glTranslatef(0.0, h2, 0.0);

glRotatef(psi, 0.0, 0.0, 1.0);

upper_arm();

}

Robot arm implementation,
OpenGL

cse457-07-hierarchical 11

ObjectAxes.cpp

cse457-07-hierarchical 12

Hierarchical modeling
Hierarchical models can be
composed of instances using
trees or DAGs:

How might we
draw the tree for
the robot arm?

• edges contain geometric transformations
• nodes contain geometry (and possibly drawing

attributes)

cse457-07-hierarchical 13

A complex example: human
figure

Q: What’s the most sensible way to traverse this
tree?

torso

left upper
arm

head right upper
arm

left upper
leg

right upper
leg

left lower
arm

right lower
arm

left lower
leg

right lower
leg

cse457-07-hierarchical 14

Human figure implementation,
OpenGL

figure()

{

torso();

glPushMatrix();

glTranslate(...);

glRotate(...);

head();

glPopMatrix();

glPushMatrix();

glTranslate(...);

glRotate(...);

left_upper_arm();

glPushMatrix();

glTranslate(...);

glRotate(...);

left_lower_arm();

glPopMatrix();

glPopMatrix();

. . .

}

cse457-07-hierarchical 15

Order of transformations

Let’s revisit the very first simple example in this lecture.

To draw the transformed house, we would write
OpenGL code like:

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glTranslatef(...);

glRotatef(...);

glScalef(...);

house();

Note that we are building the composite transformation
matrix by starting from the left and postmultiplying each
additional matrix

cse457-07-hierarchical 16

Global, fixed coordinate system

One way to think of transformations is as
movement of points in a global, fixed coordinate
system

� Build the transformation matrix sequentially
from left to right: T, then R, then S

� Then apply the transformation matrix to the
object points: multiply all the points in P by
the composite matrix TRS
• this transformation takes the points from

original to final positions

points to
draw

scaled

SPRSP

rotated

TRSP

translated

P

cse457-07-hierarchical 17

Local, changing coordinate system
Another way to think of
transformations is as affecting a
local coordinate system that the
primitive is eventually drawn in.

local frame

translate

scale

rotate

Draw!

This is EXACTLY the
same transformation as
on the previous page, it's
just how you look at it.

cse457-07-hierarchical 18

Animation

The above examples are called articulated
models:

� rigid parts
� connected by joints

They can be animated by specifying the joint
angles (or other display parameters) as functions
of time.

cse457-07-hierarchical 19

Key-frame animation

The most common method for character
animation in production is key-frame animation.

� Each joint specified at various key frames
(not necessarily the same as other joints)

� System does interpolation or in-betweening

Doing this well requires:

� A way of smoothly
interpolating key frames:
splines

� A good interactive system
� A lot of skill on the part of the

animator

cse457-07-hierarchical 20

Scene graphs

The idea of hierarchical modeling can be
extended to an entire scene, encompassing:

� many different objects
� lights
� camera position

This is called a scene tree or scene graph.

Scene

Camera

Light1
Light2

Object1

Object2 Object3

cse457-07-hierarchical 21

Summary

Here’s what you should take home from this
lecture:

� All the boldfaced terms.
� How primitives can be instanced and

composed to create hierarchical models
using geometric transforms.

� How the notion of a model tree or DAG can
be extended to entire scenes.

� How OpenGL transformations can be used in
hierarchical modeling.

� How keyframe animation works.

