Dot Product

Dot Product

The dot product or inner product of two vectors is a very useful operation in computer graphics and is applied in numerous ways

These notes are a short review of what the dot product is and some examples of how it gets used

Reference

Section A.3, Dot Products and Distances, Computer Graphics, Principles and Practice, Foley, van Dam

Definition
$v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$
$w=\left[\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right]$

$v \cdot w=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}$
$=\|v\| w \| \cos (\theta)$
if v is a unit vector, then
$v \cdot w=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}$

$=\|w\| \cos (\theta)$
and so $v \cdot w$ is the length of the projection of w onto v

Illustration of $V \cdot W$

$V_{x}=\|V\| \cos \left(\alpha_{v}\right)$
$V_{y}=\|V\| \sin \left(\alpha_{v}\right)$
$W_{x}=\|W\| \cos \left(\alpha_{w}\right)$
$W_{y}=\|W\| \sin \left(\alpha_{w}\right)$

$$
\begin{aligned}
V \cdot W & =V_{x} W_{x}+V_{y} W_{y} \\
& =\|V\| \cos \left(\alpha_{v}\right)\|W\| \cos \left(\alpha_{w}\right)+\|V\| \sin \left(\alpha_{v}\right)\|W\| \sin \left(\alpha_{w}\right) \\
& \left.=\|V\|\|W\| \cos \left(\alpha_{v}\right) \cos \left(\alpha_{w}\right)+\sin \left(\alpha_{v}\right) \sin \left(\alpha_{w}\right)\right] \\
& =\|V\|\|W\| \cos \left(\alpha_{w}-\alpha_{v}\right) \\
& =\|V\|\|W\| \cos (\theta)
\end{aligned}
$$

The cosine is a useful function \qquad
if both v and w are unit vectors, then

$$
\begin{aligned}
v \cdot w & =v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3} \\
& =\|v\|\|w\| \cos (\theta) \\
& =\cos (\theta)
\end{aligned}
$$

and so $v \cdot w$ is just the cosine of the angle between the vectors

$\theta=90^{\circ}, \cos (\theta)=0$

Unit vectors

The dot product of v with itself is

$$
\begin{aligned}
v \cdot v & =v_{1} v_{1}+v_{2} v_{2}+v_{3} v_{3} \\
& =\|v\|\|v\| \cos (0) \\
& =\|v\|^{2}
\end{aligned}
$$

and so $v \cdot v$ is the square of its length
and if v is a unit vector then $v \cdot v$ is 1
the columns of a rotation matrix are perpendicular unit vectors
$\mathrm{a} \cdot \mathrm{a}=\cos \theta \cos \theta+\sin \theta \sin \theta=1$
$\mathrm{a} \cdot \mathrm{b}=\cos \theta(-\sin \theta)+\sin \theta \cos \theta=0$
and so the transpose of a rotation matrix
is its inverse

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] *\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Front facing polygon?

surface normal dot product with ray direction
note that the transpose is rotation through $-\theta$, since $-\sin (-\theta)=\sin (\theta)$, which also shows that the transpose is the inverse of the original rotation matrix.

Equation of a line

$A x+B y+C=0$

All vectors (x, y) for which $(A, B) \cdot(x, y)=-C$

Where on ray is closest approach to \mathbf{C} ?

$R C=C-R_{o}$
R_{o} is ray origin
$R_{d i i}$ is ray direction vector (unit vector)
so
$t_{c a}=R C \cdot R_{d i r}$

