Affine transformations

Reading

Required:

- Angel 4.6, 4.7.1-4.7.4, 4.8-4.8.3, 4.9

Further reading:

- Angel, the rest of Chapter 4
- Foley, et al, Chapter 5.1-5.5.
- David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, $2^{\text {nd }}$ Ed., McGraw-Hill, New York, 1990, Chapter 2.

Geometric transformations

Geometric transformations will map points in one space to points in another: $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\boldsymbol{f}(x, y, z)$.

These transformations can be very simple, such as scaling each coordinate, or complex, such as non-linear twists and bends.

We'll focus on transformations that can be represented easily with matrix operations.

We'll start in 2D...

Representation

We can represent a point, $\mathbf{p}=(\mathrm{x}, \mathrm{y})$, in the plane

- as a column vector

- as a row vector

Representation, cont.

We can represent a 2-D transformation M by a matrix

$$
M=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

If \mathbf{p} is a column vector, M goes on the left:

$$
\begin{aligned}
\mathbf{p}^{\prime} & =M \mathbf{p} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] } & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

If \mathbf{p} is a row vector, M^{T} goes on the right:

$$
\begin{aligned}
\mathbf{p}^{\prime} & =\mathbf{p} M^{T} \\
{\left[\begin{array}{ll}
x^{\prime} & y^{\prime}
\end{array}\right] } & =\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
\end{aligned}
$$

We will use column vectors.

Two-dimensional transformations

Here's all you get with a 2×2 transformation matrix:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

So:

$$
\begin{aligned}
& x^{\prime}=a x+b y \\
& y^{\prime}=c x+d y
\end{aligned}
$$

We will develop some intimacy with the elements $a, b, c, d \ldots$

Identity

Suppose we choose $a=d=1, b=c=0$:

- Gives the identity matrix:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- Doesn't move the points at all

Scaling

Suppose we set $b=c=0$, but let a and d take on any positive value:

- Gives a scaling matrix:

$$
\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]
$$

- Provides uniform scaling or differential (non-uniform) scaling in x and y :

$$
\begin{aligned}
& x^{\prime}=a x \\
& y^{\prime}=d y
\end{aligned}
$$

Suppose we keep $b=c=0$, but let either a or d go negative.

Examples:

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Now let's leave $a=d=1$ and experiment with b. . . .
The matrix

$$
\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]
$$

gives:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad \begin{aligned}
& x^{\prime}=x+b y \\
& y^{\prime}=y
\end{aligned}
$$

Effect on unit square, cont.

Observe:

- Origin invariant under M
- M can be determined just by knowing how the corners $(1,0)$ and $(0,1)$ are mapped
- a and d give x - and y-scaling
- b and c give x - and y-shearing

Rotation

From our observations of the effect on the unit square, it should be easy to write down a matrix for "rotation about the origin":

$\cdot\left[\begin{array}{l}1 \\ 0\end{array}\right] \rightarrow$
$\cdot\left[\begin{array}{l}0 \\ 1\end{array}\right] \rightarrow$
Thus,

Limitations of the $\mathbf{2 \times 2}$ matrix

A 2×2 linear transformation matrix allows

- Scaling
- Rotation
- Reflection
- Shearing

Q: What important operation does that leave out?

Homogeneous coordinates

We can loft the problem up into 3 -space, adding a third component to every point:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Adding the third " w " component puts us in homogenous coordinates.

Then, transform with a 3×3 matrix:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=T(\mathbf{t})\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{llr}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

. . gives translation!

Affine transformations

The addition of translation to linear transformations gives us affine transformations.

In matrix form, 2D affine transformations always look like this:

$$
M=\left[\begin{array}{lll}
a & b & t_{x} \\
c & d & t_{y} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
A & \mathbf{t} \\
\hline 0 & 0 & 1
\end{array}\right]
$$

2D affine transformations always have a bottom row of $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$.

An "affine point" is a "linear point" with an added w-coordinate which is always 1 :

$$
\mathbf{p}_{\mathrm{aff}}=\left[\begin{array}{c}
\mathbf{p}_{\mathrm{lin}} \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

Applying an affine transformation gives another affine point:

$$
M \mathbf{p}_{\text {aff }}=\left[\begin{array}{c}
A \mathbf{p}_{\text {lin }}+\mathbf{t} \\
1
\end{array}\right]
$$

Rotation about arbitrary points

Until now, we have only considered rotation about the origin. With homogeneous coordinates, we can specify a rotation, θ, about any point
$q=\left[\begin{array}{lll}q_{x} & q_{y} & 1\end{array}\right]^{\top}$ with a matrix developed as follows.

$\mathrm{T}(\mathrm{q})$: translate back

Desired effect is achieved.
Points P can be drawn at new coordinates.
$\mathrm{T}(-\mathrm{q}):$ translate q
to the origin

P
P : points to draw

Basic 3-D transformations: scaling

Some of the 3-D affine transformations are just like the 2-D ones.

In this case, the bottom row is always $\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$.

For example, scaling:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotation in 3D

Rotation now has more possibilities in 3D:

$$
\begin{array}{ll}
R_{x}(\theta) & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
R_{y}(\theta)=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { U } R_{y} \\
R_{z}(\theta)=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { Use right hand rule }
\end{array}
$$

How many degrees of freedom are there in an arbitrary rotation?

How else might you specify a rotation?

Shearing in 3D

Shearing is also more complicated. Here is one example:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & b & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

We call this a shear with respect to the $x-z$ plane or a shear along the y-direction.

Properties of affine transformations

Here are some useful properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Midpoints map to midpoints (in fact, ratios are always preserved)

$$
\text { ratio }=\frac{\|\mathbf{p q}\|}{\|\mathbf{q}\|}=\frac{s}{t}=\frac{\left\|\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\|}{\left\|\mathbf{q}^{\prime} \mathbf{r}^{\prime}\right\|}
$$

Affine transformations in OpenGL

OpenGL maintains a "modelview" matrix that holds the current transformation \mathbf{M}.

The modelview matrix is applied to points (usually vertices of polygons) before drawing.

It is modified by commands including:

```
- glLoadIdentity()
                                    \(\mathbf{M} \leftarrow \mathbf{I}\)
    - set M to identity
- glTranslatef \(\left(t_{x}, t_{y}, t_{z}\right)\)
                                    \(\mathbf{M} \leftarrow \mathbf{M T}\)
    - translate by \(\left(\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}, \mathrm{t}_{\mathrm{z}}\right)\)
- glRotatef ( \(\theta\), \(\mathrm{x}, \mathrm{y}, \mathrm{z})\)
                            \(\mathrm{M} \leftarrow \mathbf{M R}\)
    - rotate by angle \(\theta\) about axis ( \(x, y, z\) )
- glScalef \(\left(s_{x}, s_{y}, s_{z}\right)\)
                                    \(\mathbf{M} \leftarrow \mathbf{M S}\)
    - scale by ( \(\mathrm{s}_{\mathrm{x}}, \mathrm{s}_{\mathrm{y}}, \mathrm{s}_{\mathrm{z}}\) )
```

Note that OpenGL adds transformations by postmultiplication of the modelview matrix.

Summary

What to take away from this lecture:

- All the names in boldface.
- How points and transformations are represented.
- What all the elements of a 2×2 transformation matrix do and how these generalize to 3×3 transformations.
- What homogeneous coordinates are and how they work for affine transformations.
- How to concatenate transformations.
- The mathematical properties of affine transformations.

