Reading

Required:

+ Watt, sections 1.3-1.4, 12.1-12.5.1.
* Watt errata

Further reading:

R T . ¢ A. Glassner. An Introduction to Ray Tracing.
ay lracing Academic Press, 1989. [In the lab.]

+ K. Turkowski, “Properties of Surface Normal
Transformations,” Graphics Gems, 1990, pp.
539-547. [In the reader.]

¢ T. Whitted. An improved illumination model for

shaded display. Communications of the ACM
23(6), 343-349, 1980. [In the reader.]

Geometric optics Eye vs. light ray tracing

Modern theories of light treat it as both a wave Where does light begin?

and a particle. _ _ _
At the light: light ray tracing (a.k.a., forward ray

We will take a combined and somewhat simpler tracing or photon tracing)

view of light — the view of geometric optics.

Here are the rules of geometric optics:

+ Lightis a flow of photons with wavelengths.

We'll call these flows “light rays.”
+ Light rays travel in straight lines in free A\

space.

+ Light rays do not interfere with each other as At the eye: eye ray tracing (a.k.a., backward ray
they cross. tracing)

+ Light rays obey the laws of reflection and
refraction.

+ Light rays travel form the light sources to the
eye, but the physics is invariant under path
reversal (reciprocity).

We will generally follow rays from the eye into the
scene.

Precursors to ray tracing Whitted ray-tracing algorithm

Local illumination In 1980, Turner Whitted introduced ray tracing to the
graphics community.

+ Cast one eye ray, then shade according to

light + Combines eye ray tracing + rays to light

+ Recursively traces rays

Appel (1968)

+ Cast one eye ray + one ray to light
Algorithm:

1.For each pixel, trace a primary ray in direction V to
O the first visible surface.

2.For each intersection, trace secondary rays:

+ Shadow rays in directions L, to light sources
+ Reflected ray in direction R.
+ Refracted ray or transmitted ray in direction T.

Whitted algorithm (cont'd) Shading

Qo R

Let's look at this in stages: 79@

d
P

A ray is defined by an origin p and a unit direction
d and is parameterized by .

eye

P+td

Primary rays

Let /(P, d) be the intensity seen along that ray.
Then:

I(P’ d) = Idirect + Ireﬂected + Itransmitted

where

lyirect 18 computed from the Phong model

Ireﬂected = krl (Q’ R)
Reflection rays Refracted rays ¢ Itransmitted = ktl (Q, T)

Reflection and transmission

Law of reflection:

Snell's law of refraction:
7 sing = n;sin 6

where 73, , 1, are indices of refraction.

Total Internal Reflection

The equation for the angle of refraction can be
computed from Snell's law:

What happens when 7, > 7,?

When 6, is exactly 90°, we say that 6, has achieved
the “critical angle” 6, .

For > 6., no rays are transmitted, and only

reflection occurs, a phenomenon known as “total
internal reflection” or TIR.

/ o

Glass

10

Error in Watt!!

In order to compute the refracted direction, it is
useful to compute the cosine of the angle of
refraction in terms of the incident angle and the
ratio of the indices of refraction.

On page 24 of Watt, he develops a formula for
computing this cosine. Notationally, he uses u
instead of 7 for the index of refraction in the text,
but uses 7 in Figure 1.16(!?), and the angle of
incidence is ¢ and the angle of refraction is 6.

Unfortunately, he makes a grave error in
computing cosé.

The last equation on page 24 should read:

c0s6 = /1- 12 (1— cos? ¢)

In any case, see the errata for corrections that you
can write into your books.

11

Ray-tracing pseudocode

We build a ray traced image by casting rays through
each of the pixels.

function fracelmage (scene):
for each pixel (i,j) in image
S = pixelToWorld(i,j)
P=COP
d=(S-P)|| S-P|
[(i,j) = traceRay(scene, P, d)
end for
end function

12

Ray-tracing pseudocode, cont’d

function fraceRay(scene, P, d):
(t, N, mtrl) « scene.intersect (P, d)
Q < ray (P, d) evaluated at t
| = shade()
R = reflectDirection()
| « | + mtrlLK, * traceRay(scene, Q, R)
if ray is entering object then
n_i =index_of air
n_t = mtrl.index
else
n_i = mtrl.index
n_t = index_of_air
if (notTIR ()) then
T = refractDirection ()
| < | + mtrl.k; * traceRay(scene, Q, T)
end if
return |
end function

Terminating recursion

Q: How do you bottom out of recursive ray tracing?

Possibilities:

13 14
Shading pseudocode Shadow attenuation
Next, we need to calculate the color returned by the Computing a shadow can be as simple as checking
shade function. to see if a ray makes it to the light source.
For a point light source:
function shade(mtrl, scene, Q, N, d):
| < mtrl.kg + mtrl. k; * scene->1, function PointLight::shadowAttenuation(scene, P)
for each light source A do: d = (this.position - P).normalize()
atten = A -> distanceAttenuation() (t, N, mtrl) < scene.intersect(P, d)
A -> shadowAttenuation() Q « ray(t)
| « | + atten*(diffuse term + spec term) if Q is before the light source then:
end for atten=0
return | else
end function atten = 1
end if

15

return atten
end function

Q: What if there are transparent objects along a path
to the light source?

16

Intersecting rays with spheres

Given:

+ The coordinates of a point along a ray
passing through P in the direction d are:

x=R +td,
y=F +td,
z=R+1d,

+ A unit sphere S centered at the origin defined
by the equation:

Find: The t at which the ray intersects S.

Intersecting rays with spheres

Solution by substitution:
X’ +y*+2-1=0
(B +td, Y +(R +td,f +(B+td,} —1=0
at’> +bt+c=0

where

di+di+dl
2(Rd,+Rd,+Rd,)
B+FP+F -1

a
b
c

Q: What are the solutions of the quadratic
equation in t and what do they mean?

Q: What is the normal to the sphere at a point
(x,y,z) on the sphere?

17 18
Ray-plane intersection Ray with cube intersection
\Ik
o P p
\tnear 1 .\‘Lfar thear
i
P.—3
\t{A
We can write the equation of a plane as:
To intersect a ray with an axis-aligned cube
ax+by+cz+d=0
+ for each pair of parallel planes, compute t
The coefficients a, b, and ¢ form a vector that is intersection values for both. Lett ., be the
normal to the plane, n =[a b c]. Thus, we can re- smaller, t, be the larger
write the plane equation as: ¢ lett, =largestt,.,, t, = smallest t;
+ ray intersections cube if:
We can solve for the intersection parameter (and
thus the point): + intersection point given by:
19 20

Intersecting rays with polyhedra

Polyhedron testing Polygon testing

To intersect a ray with a polyhedron:

+ Test intersection of ray with bounding
sphere.

+ Locate the “front-facing” faces of the
polyhedron with
d-N

+ Intersect the ray with each front face's
supporting plane.

+ Use a point-in-polygon test to see if the ray is
inside the face.

+ Sort intersections according to smallest t.

Epsilons

Due to finite precision arithmetic, we do not
always get the exact intersection at a surface.

Q: What kinds of problems might this cause?

Q: How might we resolve this?

21 22
Intersecting with xformed geometry Intersecting with xformed geometry
In many cases, objects such as spheres, cylinders, The intersected normal is in object (local)
and boxes will be placed using transformations. coordinates. How do we transform it to world
What if the object being intersected were coordinates?
transformed by a matrix M?
Apply M to the ray first and intersect in object
(local) coordinates!
23 24

Summary

What to take home from this lecture:

1.
2.

The meanings of all the boldfaced terms.

Enough to implement basic recursive ray
tracing.

How reflection and transmission directions
are computed.

How ray--object intersection tests are
performed on spheres, planes, and cubes

How ray epsilons are used.

How intersections with transformed geometry
are done.

25

