Hidden Surface Algorithms

Reading

Reading:

+ Watt, 6.6 (esp. intro and subsections 1, 4, and
8-10), 12.1.4.

Optional reading:

+ Foley, van Dam, Feiner, Hughes, Chapter 15

+ |. E. Sutherland, R. F. Sproull, and R. A.
Schumacker, A characterization of ten hidden
surface algorithms, ACM Computing Surveys
6(1): 1-55, March 1974,

Introduction

So far we know how to construct a hierarchical 3D
model and map points from 3D to 2D. Is that all?

Not every surface of an object is visible from a
given camera viewpoint. We need an algorithm to
determine which parts get drawn.

Known as the hidden surface elimination
problem or the visible surface determination
problem..

Hidden surface algorithms can be characterized in
at lease three ways:

+ Object-space vs. image-space
+ Object order vs. image order
+ Sort first vs. sort last

Object-space algorithms

Basic idea: operate on 3D objects

+ For each object (3D primitive) in the scene,
compute which part is visible, then draw

Objects typically intersected against each other
Tests performed to high precision

Resulting list of visible objects can be drawn at any

resolution

Complexity:

+ May have to compare every pair of objects, so for n

objects, can take O(n?) time

For an mxm display, have to fill in colors for m?2
pixels.

Overall complexity can be O(ke,; n? + ks, m?).

Implementation:

+ Difficult to implement
+ Can get numerical problems

Image-space algorithms

Basic idea: operate on pixels

+ Find the closest point as seen through each pixel
+ Calculations performed at display resolution
+ Precision requirements typically not high

Complexity:

+ Naive approach checks all n objects at every
pixel. Then, O()-

Better approaches check only the objects that
could be visible at each pixel. Let’s say, on
average, d objects are visible at each pixel
(a.k.a., depth complexity). Then, O().

Implementation:

+ Very simple to implement.
* Used a lot in practice.

Object order vs. image order

Object order:

+ Consider each object only once, draw its
pixels, and move on to the next object.

+ Might draw the same pixel multiple times.

Image order:

+ Consider each pixel only once, find nearest
object, and move on to the next pixel.

+ Might compute relationships between objects
multiple times.

Sort first vs. sort last

Sort first:

+ Find some depth-based ordering of the objects
relative to the camera, then draw back to front.

Build an ordered data structure to avoid
duplicating work.

Sort last:

+ Sort implicitly as more information becomes
available.

Outline of Lecture

+ Z-buffer
+ Ray casting
+ Binary space partitioning (BSP) trees

Z-buffer

Idea: along with a pixel’s red, green and blue
values, maintain some notion of its depth

+ An additional channel in memory, like alpha
+ Called the depth buffer or Z-buffer

void draw_mode_setup(void) {

G1Enable(GL_DEPTH_TEST);

}

When the time comes to draw a pixel, compare its
depth with the depth of what's already in the
framebuffer. Replace only if it’s closer

Very widely used

History

+ Originally described as “brute-force image
space algorithm”, mentioned in an appendix

Written off as totally impractical algorithm (for
huge memories)

Today, done easily in hardware

Z-buffer

The Z-buffer' or depth buffer algorithm [Catmull, 1974]
is probably the simplest and most widely used.

Here is pseudocode for the Z-buffer hidden surface
algorithm:

for each pixel (i,j) do
Z-buffer [ij] « FAR
Framebuffer]i,j] < <background color>
end for
for each polygon A do
for each pixel in A do
Compute depth z and shade s of A at (i)
if z > Z-buffer [ij] then
Z-buffer [i,j] < z
Framebufferli,j] « s
end if
end for
end for

Q: What should FAR be set to?

Z-buffer, cont'd

The process of filling in the pixels inside of a
polygon is called rasterization.

During rasterization, the z value and shade s can
be computed incrementally (fast!).

(z1,91, 1)
i (R1, Gy, By)

\

N

yS
Vs

V3

A

Z value interpolation

Parallelpiped
View Volume

Parallel Projection
(a)

Perspective Projection
(b}

After projective normalization, the z values may
be linearly interpolated within the image

Z

Za/Z‘P\Zb Scan line

Z

Z-buffer: Analysis

Classification?
Easy to implement?
Easy to implement in hardware?

Incremental drawing calculations (uses
coherence)?

Pre-processing required?

On-line (doesn’t need all objects before
drawing begins)?

If objects move, does it take extra work than
normal to draw the frame?

If the viewer moves, does it take extra work
than normal to draw the frame?

Typically polygon-based?

Efficient shading (doesn’t compute colors of
hidden surfaces)?

Handles transparency?
Handles refraction?

Ray casting

Idea: For each pixel center P;

+ Send ray from eye point (COP), ¢, through P;
into scene.

+ Intersect ray with each object.
+ Select nearest intersection.

Ray casting, cont.

.,
gﬁi

Implementation:
+ Might parameterize each ray:
r(t)=c+t(P;-c)

+ Each object O, returns t, >1 such that first
intersection with O, occurs at r(f,).

Q: Given the set {f,} what is the first intersection
point?

Note: these calculations generally happen in world
coordinates.

Ray casting: Analysis

Classification?
Easy to implement?
Easy to implement in hardware?

Incremental drawing calculations (uses
coherence)?

Pre-processing required?

On-line (doesn’t need all objects before
drawing begins)?

If objects move, does it take extra work than
normal to draw the frame?

If the viewer moves, does it take extra work
than normal to draw the frame?

Typically polygon-based?

Efficient shading (doesn’t compute colors of
hidden surfaces)?

Handles transparency?
Handles refraction?

Binary-space partitioning (BSP)

+ Do extra preprocessing to allow quick display
from any viewpoint.

Key observation: A polygon A is painted in
correct order if

+ Polygons on far side of A are painted first
+ P s painted next
+ Polygons in front of A are painted last.

BSP tree creation

BSP tree creation (cont’d)

procedure MakeBSPTree:

takes PolygonList L

returns BSPTree
Choose polygon A from L to serve as root
Split all polygons in L according to A
node « A
node.neg < MakeBSPTree(Polys on - side of A)
node.pos < MakeBSPTree(Polys on + side of A)
return node

end procedure

Note: Performance is improved when fewer polygons
are split --- in practice, best of ~ 5 random splitting
polygons are chosen.

Note: BSP is created in world coordinates.

BSP tree display

procedure DisplayBSPTree:
Takes BSPTree T
if T is empty then return
if viewer is in front (on pos. side) of T.node
DisplayBSPTree(T.)
Draw T.node
DisplayBSPTree|(T._____)
else
DisplayBSPTree(T.)
Draw T.node
DisplayBSPTree(T.)
end if

end procedure

BSP trees: Analysis

Classification?
Easy to implement?
Easy to implement in hardware?

Incremental drawing calculations (uses
coherence)?

Pre-processing required?

On-line (doesn’t need all objects before
drawing begins)?

If objects move, does it take extra work than
normal to draw the frame?

If the viewer moves, does it take extra work
than normal to draw the frame?

Typically polygon-based?

Efficient shading (doesn’t compute colors of
hidden surfaces)?

Handles transparency?
Handles refraction?

Visibility tricks for Z-buffers

Z-buffering is the algorithm of choice for hardware
rendering, so let’s think about how to make it run
as fast as possible...

What is the complexity of the Z-buffer algorithm?

What can we do to decrease the constants?

Summary

What to take home from this lecture:

*

*

Classification of hidden surface algorithms

Understanding of Z-buffer and ray casting
hidden

surface algorithms
Familiarity with BSP trees

