Affine transformations

Reading
Required:

¢ Foley, etal, Chapter 5.1-5.5.
Further reading:

+ David F. Rogers and J. Alan Adams, Mathematical Elements for
Computer Graphics, 2™ Ed., McGraw-Hill, New York, 1990, Chapter
2.

Geometric transformations

Geometric transformations will map points in one space to pointsin
another: (x'y',z) = f(x,y,2).
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These transformations can be very simple, such as scaling each

coordinate, or complex, such as non-linear twists and bends.

We'll focus on transformations that can be represented easily with
matrix operations.

Representation

We can represent a point, p=(x,y) in the plane

+ asacolumn vector
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Representation, cont.

We can represent a2-D transformation M by a matrix

p'=Mp

If pis a row vector, M goes on theright:
p'= pMT

Do vI=lx g g

We will use columnvectors.

Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M:
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So: '

X'=ax +by

y'=cx +dy

We will develop some intimacy with the elementsa, b, ¢, d...

Identity
Suppose we choose a=d=1, b=c=0:
¢ Gives the identity matrix:
él Ou
& 14

+ Doesn't move the pointsatall

Scaling

Suppose we set b=c=0, but let a and d take on any positive value:
+ Givesascaling matrix:
éa 0u

¢ Provides differential scaling in xand y:

X'=ax
y'=dy




Scaling
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Suppose we keep b=c=0, but let either a or d go negative.

Examples:
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Now let's leave a=d=1 and experimentb. ...
The matrix él b@
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X'=x+by
gives: 'V
y=y
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Effect on unit square

Let's see how a general 2 x 2 transformation M affects the unit square:
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Effect on unit square, cont.

Observe:

¢ Origininvariant under M

+ M can be determined just by knowing how the corners (1,0) and
(0,1) are mapped

+ aand dgive x- and y-scaling

+ band cgive x- and y-shearing

Rotation
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Limitations of the 2 x 2 matrix

A2x2matrix dlows

¢ Scaling
+ Rotation
+ Reflection
+ Shearing

Q: What important operation does that leave out?

Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a third component to
every point:
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And then transform with a 3 x 3 matrix:
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Homogeneous coordinates
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... gives translation!
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Rotation around arbitrary point

Reflection around arbitrary axis

Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D ones.

For example, scaling; &'l &, 0 0 0péxu
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Translation in 3D
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Rotationin 3D

Rotation now has more possibilities in 3D:
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Use right hand rule

Shearingin 3D

Shearing is also more complicated.

Here is one example:
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Properties of affine transformations

All of the transformations we've looked at so far are examples of* affine

transformations.”

Here are some useful properties of affine transformations:

+ Lines map to lines

+ Parallel lines remain parallel

+ Midpoints map to midpoints (in fact, ratios are always preserved)
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Summary

What to take away from this lecture:

*

*

*

All the names in boldface.
How points and transformations are represented.

What all the elements of a 2 x 2 transformation matrix do and how
these generalize to 3 x 3 transformations.

What homogeneous coordinates are and how they work for affine
transformations.

How to concatenate transformations.

The mathematical properties of affine transformations.




