
Dynamic Programming:

Interval Scheduling and Knapsack

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.
! Job j starts at sj, finishes at fj, and has weight or value vj .
! Two jobs compatible if they don't overlap.
! Goal: find maximum weight subset of mutually compatible

jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

8

How?
• Divide & Conquer?
• Greedy?

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1:
! Consider jobs in ascending order of finish time.
! Keep job if compatible with previously chosen jobs.

Observation. Greedy fails spectacularly with arbitrary weights.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 1000

weight = 1

by finish

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a1

weight = 1000

weight = 999 a2 a3 a4 a5 a6 a7 a8 a9 a10

by
weight

9

Exercises: by “density” = weight per unit time? Other ideas?

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 £ f2 £ . . . £ fn .
Def. p(j) = largest i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

58

37

26

05

14

03

02

01

-0

p(j)j

10

“p” suggesting (last possible) “predecessor”

Notation. OPT(j) = value of optimal solution to the problem consisting of
job requests 1, 2, ..., j.

! Case 1: Optimum selects job j.
– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

! Case 2: Optimum does not select job j.
– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1

key idea:
binary choice

Dynamic Programming: Binary Choice

€

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise

$
%

11

principle of
optimality

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling: Brute Force Recursion

Brute force recursive algorithm.

12

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm is correct, but
spectacularly slow because of redundant sub-problems Þ
exponential time.

Ex. Number of recursive calls for family of "layered"
instances grows like Fibonacci sequence.

3

4

5

1

2

p(1) = p(2) = 0; p(j) = j-2, j ≥ 3

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

13

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Claim: OPT[j] is value of optimal solution for jobs 1..j
Timing: Loop is O(n); sort is O(n log n); what about p(j)?

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
OPT[0] = 0
for j = 1 to n

OPT[j] = max(vj + OPT[p(j)], OPT[j-1])
}

Output OPT[n]

17

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 £ f2 £ . . . £ fn .
Def. p(j) = largest i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

58

37

26

05

14

03

02

01

0--0

optjpjvjj

18

Weighted Interval Scheduling Example

Label jobs by finishing time: f1 £ f2 £ . . . £ fn .
p(j) = largest i < j s.t. job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

19

Exercise: try other concrete examples:
If all vj=1: greedy by finish time ➛ 1,4,8
what if v2 > v1?, but < v1+v4?
v2>v1+v4, but v2+v6 < v1+v7, say? etc.

j pj vj max(vj+opt[p(j)], opt[j-1]) = opt[j]

0 - - - 0

1 0 2 max(2+0, 0) = 2

2 0 3 max(3+0, 2) = 3

3 0 1 max(1+0, 3) = 3

4 1 6 max(6+2, 3) = 8

5 0 9 max(9+0, 8) = 9

6 2 7 max(7+3, 9) = 10

7 3 2 max(2+3, 10) = 10

8 5 ? max(?+9, 10) = ?

Exercise: What values of v8 cause it to be
in/ex-cluded from opt?

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal
value. What if we want the solution itself?

A. Do some post-processing – “traceback”

! # of recursive calls £ n Þ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
if (j = 0)

output nothing
else if (vj + OPT[p(j)] > OPT[j-1])

print j
Find-Solution(p(j))

else
Find-Solution(j-1)

}

the condition
determining the
max when
computing OPT[]

the relevant
sub-problem

20

Weighted Interval Scheduling Example

Label jobs by finishing time: f1 £ f2 £ . . . £ fn .
p(j) = largest i < j s.t. job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

21

j pj vj max(vj+opt[p(j)], opt[j-1]) = opt[j]

0 - - - 0

1 0 2 max(2+0, 0) = 2

2 0 3 max(3+0, 2) = 3

3 0 1 max(1+0, 3) = 3

4 1 6 max(6+2, 3) = 8

5 0 9 max(9+0, 8) = 9

6 2 7 max(7+3, 9) = 10

7 3 2 max(2+3, 10) = 10

8 5 2 max(2+9, 10) = 11

V8 = 2 is included; opt solution is v8+v5

Weighted Interval Scheduling Example

Label jobs by finishing time: f1 £ f2 £ . . . £ fn .
p(j) = largest i < j s.t. job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

22

j pj vj max(vj+opt[p(j)], opt[j-1]) = opt[j]

0 - - - 0

1 0 2 max(2+0, 0) = 2

2 0 3 max(3+0, 2) = 3

3 0 1 max(1+0, 3) = 3

4 1 6 max(6+2, 3) = 8

5 0 9 max(9+0, 8) = 9

6 2 7 max(7+3, 9) = 10

7 3 2 max(2+3, 10) = 10

8 5 .1 max(0.1+9, 10) = 10

V8 = 0.1 is excluded; opt solution is v6+v2

Sidebar: why does job ordering matter?

It’s Not for the same reason as in the greedy algorithm
for unweighted interval scheduling.

Instead, it’s because it allows us to consider only a small
number of subproblems (O(n)), vs the exponential
number that seem to be needed if the jobs aren’t
ordered (seemingly, any of the 2n possible
subsets might be relevant)

Don’t believe me? Think about the analogous problem
for weighted rectangles instead of intervals… (I.e., pick
max weight non-overlapping subset of a set of axis-
parallel rectangles.) Same problem for squares or
circles also appears difficult.

23

6.4 Knapsack Problem

Knapsack problem.
! Given n objects and a “knapsack.”
! Item i weighs wi > 0 kilograms and has value vi > 0.
! Knapsack has capacity of W kilograms.
! Goal: maximize total value without overfilling knapsack

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35 Þ greedy not optimal.
[NB greedy is optimal for “fractional knapsack”: take #5 + 4/6 of #4]

Knapsack Problem

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2
W = 11

31

1

V/W

3.60

3.66

3

4

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, …, i.

! Case 1: OPT does not select item i.
–OPT selects best of { 1, 2, …, i-1 }

! Case 2: OPT selects item i.
– accepting item i does not immediately imply that we will

have to reject other items
–without knowing what other items were selected before

i, we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

32

binary choice

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, …, i with
weight limit w.

! Case 1: OPT does not select item i.
–OPT selects best of { 1, 2, …, i-1 } using weight limit w

! Case 2: OPT selects item i.
– new weight limit = w – wi
–OPT selects best of { 1, 2, …, i–1 } using new weight limit

€

OPT(i, w) =

0 if i = 0
OPT(i −1, w) if wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi){ } otherwise

$
%

&
%

33

Still
principle

of
optimality

Still Using
Binary Choice

OPT(i, w) = max profit from subset of items 1, …, i with
weight limit w.

(Correctness: prove it by induction on i & w.)

Input: n, w1,…,wn, v1,…,vn, W

for w = 0 to W
OPT[0, w] = 0

for i = 1 to n
for w = 1 to W

if (wi > w)
OPT[i, w] = OPT[i-1, w]

else
OPT[i, w] = max {OPT[i-1, w], vi + OPT[i-1, w-wi]}

return OPT[n, W]

Knapsack Problem: Bottom-Up

34

Knapsack Algorithm

n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

35

11

0

7

25

40

1

40

W + 1

W = 11OPT: { 4, 3 }
value = 22 + 18 = 40

if (wi > w)
OPT[i, w] = OPT[i-1, w]

else
OPT[i, w] = max{OPT[i-1,w],vi+OPT[i-1,w-wi]}

35

Knapsack Problem: Running Time

Running time. Q(n W).
! If W is “small’ this is fine, but in worst case…
! Not polynomial in input size! (“W” takes only log2W bits)

! Called "Pseudo-polynomial”
! Knapsack is NP-hard. [Chapter 8]

Knapsack approximation algorithm [Section 11.8].
Good News: There exists a polynomial time algorithm that
produces a feasible solution (i.e., satisfies weight-limit
constraint) that has value within 0.01% (or any other desired
factor ε) of optimum.
Bad News: as ε goes down, polynomial goes up.

36

