
Dynamic Programming:

Interval Scheduling and Knapsack



6.1  Weighted Interval Scheduling



Weighted Interval Scheduling

Weighted interval scheduling problem.
! Job j starts at sj, finishes at fj, and has weight or value vj . 
! Two jobs compatible if they don't overlap.
! Goal:  find maximum weight subset of mutually compatible 

jobs.
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How?  
• Divide & Conquer?
• Greedy?



Unweighted Interval Scheduling Review

Recall.  Greedy algorithm works if all weights are 1:
! Consider jobs in ascending order of finish time.
! Keep job if compatible with previously chosen jobs.

Observation.  Greedy fails spectacularly with arbitrary weights.
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Exercises: by “density” = weight per unit time?  Other ideas?



Weighted Interval Scheduling

Notation.  Label jobs by finishing time:  f1  £ f2  £ . . . £ fn .
Def.  p(j) = largest i < j such that job i is compatible with j.

Ex:  p(8) = 5, p(7) = 3, p(2) = 0.
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“p” suggesting (last possible) “predecessor”



Notation.  OPT(j) = value of optimal solution to the problem consisting of 
job requests 1, 2, ..., j.

! Case 1:  Optimum selects job j.
– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p(j)

! Case 2:  Optimum does not select job j.
– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  j-1

key idea:
binary choice

Dynamic Programming:  Binary Choice
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OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j −1){ } otherwise
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principle of 
optimality



Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling:  Brute Force Recursion

Brute force recursive algorithm.
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Weighted Interval Scheduling:  Brute Force

Observation.  Recursive algorithm is correct, but 
spectacularly slow because of redundant sub-problems  Þ
exponential time.

Ex.  Number of recursive calls for family of "layered" 
instances grows like Fibonacci sequence.
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Weighted Interval Scheduling:  Bottom-Up

Bottom-up dynamic programming.  Unwind recursion.

Claim: OPT[j] is value of optimal solution for jobs 1..j
Timing:  Loop is O(n); sort is O(n log n); what about p(j)?

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
OPT[0] = 0
for j = 1 to n

OPT[j] = max(vj + OPT[p(j)], OPT[j-1])
}

Output OPT[n]
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Weighted Interval Scheduling

Notation.  Label jobs by finishing time:  f1  £ f2  £ . . . £ fn .
Def.  p(j) = largest i < j such that job i is compatible with j.

Ex:  p(8) = 5, p(7) = 3, p(2) = 0.
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Weighted Interval Scheduling Example

Label jobs by finishing time:  f1  £ f2  £ . . . £ fn .
p(j) = largest i < j s.t. job i is compatible with j.
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Exercise: try other concrete examples:
If all vj=1: greedy by finish time ➛ 1,4,8
what if v2 > v1?, but < v1+v4? 
v2>v1+v4, but v2+v6 < v1+v7, say? etc.

j pj vj max(vj+opt[p(j)], opt[j-1]) = opt[j]

0 - - - 0

1 0 2 max(2+0,   0) = 2

2 0 3 max(3+0,   2) = 3

3 0 1 max(1+0,   3) = 3

4 1 6 max(6+2,   3) = 8

5 0 9 max(9+0,   8) = 9

6 2 7 max(7+3,   9) = 10

7 3 2 max(2+3, 10) = 10

8 5 ? max(?+9, 10) = ?

Exercise: What values of v8 cause it to be 
in/ex-cluded from opt?



Weighted Interval Scheduling:  Finding a Solution

Q. Dynamic programming algorithms computes optimal 
value.  What if we want the solution itself?

A.  Do some post-processing – “traceback”

! # of recursive calls £ n  Þ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
if (j = 0)

output nothing
else if (vj + OPT[p(j)] > OPT[j-1])

print j
Find-Solution(p(j))

else
Find-Solution(j-1)

}

the condition 
determining the 
max when 
computing OPT[ ]

the relevant 
sub-problem

20



Weighted Interval Scheduling Example

Label jobs by finishing time:  f1  £ f2  £ . . . £ fn .
p(j) = largest i < j s.t. job i is compatible with j.
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j pj vj max(vj+opt[p(j)], opt[j-1]) = opt[j]

0 - - - 0

1 0 2 max(2+0,   0) = 2

2 0 3 max(3+0,   2) = 3

3 0 1 max(1+0,   3) = 3

4 1 6 max(6+2,   3) = 8

5 0 9 max(9+0,   8) = 9

6 2 7 max(7+3,   9) = 10

7 3 2 max(2+3, 10) = 10

8 5 2 max(2+9, 10) = 11

V8 = 2 is included; opt solution is v8+v5



Weighted Interval Scheduling Example

Label jobs by finishing time:  f1  £ f2  £ . . . £ fn .
p(j) = largest i < j s.t. job i is compatible with j.
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j pj vj max(vj+opt[p(j)], opt[j-1]) = opt[j]

0 - - - 0

1 0 2 max(2+0,   0) = 2

2 0 3 max(3+0,   2) = 3

3 0 1 max(1+0,   3) = 3

4 1 6 max(6+2,   3) = 8

5 0 9 max(9+0,   8) = 9

6 2 7 max(7+3,   9) = 10

7 3 2 max(2+3, 10) = 10

8 5 .1 max(0.1+9, 10) = 10

V8 = 0.1 is excluded; opt solution is v6+v2



Sidebar: why does job ordering matter?

It’s Not for the same reason as in the greedy algorithm 
for unweighted interval scheduling.

Instead, it’s because it allows us to consider only a small 
number of subproblems (O(n)), vs the exponential 
number that seem to be needed if the jobs aren’t 
ordered (seemingly, any of the 2n possible 
subsets might be relevant)

Don’t believe me?  Think about the analogous problem 
for weighted rectangles instead of intervals… (I.e., pick 
max weight non-overlapping subset of a set of axis-
parallel rectangles.)  Same problem for squares or 
circles also appears difficult.
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6.4  Knapsack Problem



Knapsack problem.
! Given n objects and a “knapsack.”
! Item i weighs wi > 0 kilograms and has value vi > 0.
! Knapsack has capacity of W kilograms.
! Goal:  maximize total value without overfilling knapsack

Ex:  { 3, 4 } has value 40.

Greedy:  repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35  Þ greedy not optimal.
[NB greedy is optimal for “fractional knapsack”: take #5 + 4/6 of #4]

Knapsack Problem
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Dynamic Programming:  False Start

Def.  OPT(i) = max profit subset of items 1, …, i.

! Case 1:  OPT does not select item i.
–OPT selects best of { 1, 2, …, i-1 } 

! Case 2:  OPT selects item i.
– accepting item i does not immediately imply that we will 

have to reject other items
–without knowing what other items were selected before 

i, we don't even know if we have enough room for i

Conclusion.  Need more sub-problems!
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binary choice



Dynamic Programming:  Adding a New Variable

Def.  OPT(i, w) = max profit subset of items 1, …, i with 
weight limit w.

! Case 1:  OPT does not select item i.
–OPT selects best of { 1, 2, …, i-1 } using weight limit w 

! Case 2:  OPT selects item i.
– new weight limit = w – wi
–OPT selects best of { 1, 2, …, i–1 } using new weight limit

  

€ 

OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi ){ } otherwise
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% 
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Still
principle 

of 
optimality

Still Using 
Binary Choice



OPT(i, w) = max profit from subset of items 1, …, i with 
weight limit w.

(Correctness: prove it by induction on i & w.)

Input: n, w1,…,wn, v1,…,vn, W

for w = 0 to W
OPT[0, w] = 0

for i = 1 to n
for w = 1 to W

if (wi > w)
OPT[i, w] = OPT[i-1, w]

else
OPT[i, w] = max {OPT[i-1, w], vi + OPT[i-1, w-wi]}

return OPT[n, W]

Knapsack Problem:  Bottom-Up

34



Knapsack Algorithm

n + 1
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W = 11OPT:  { 4, 3 }
value = 22 + 18 = 40

if (wi > w)
OPT[i, w] = OPT[i-1, w]

else
OPT[i, w] = max{OPT[i-1,w],vi+OPT[i-1,w-wi]}
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Knapsack Problem:  Running Time

Running time.  Q(n W).
! If W is “small’ this is fine, but in worst case…
! Not polynomial in input size! (“W” takes only log2W bits)

! Called "Pseudo-polynomial”
! Knapsack is NP-hard.  [Chapter 8]

Knapsack approximation algorithm [Section 11.8].  
Good News: There exists a polynomial time algorithm that 
produces a feasible solution (i.e., satisfies weight-limit 
constraint) that has value within 0.01% (or any other desired 
factor ε) of optimum.  
Bad News: as ε goes down, polynomial goes up.
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